回归的一般方法
(1)收集数据:可以使用任何方法收集数据
(2)准备数据:回归需要数值型数据,标称型数据将被转换成二值型数据
(3)分析数据: 绘出数据的可视化二维图将有助于对数据做出理解和分析,在采用缩减法求得新回归系数之后,可以将新拟合线绘再图上作为对比
(4)训练算法:找到回归系数
(5)测试算法:使用R2 或者预测值和数据的拟合度,来分析模型的效果
(6)使用算法:使用回归,可以在给定输入的时候预测出一个数值,这是对分类方法的提升,因为这样可以预测连续型数据而不仅仅是离散的类别标签
程序清单8-1 标准回归函数和数据导入函数
from numpy import *
def loadDataSet(fileName):
numFeat = len(open(fileName).readline().split('\t')) - 1 #特征值个数
dataMat = []; labelMat = []
fr = open(fileName)
for line in fr.readlines():
lineArr =[]
curLine = line.strip().split('\t')
for i in range(numFeat):
lineArr.append(float(curLine[i]))
dataMat.append(lineArr)
labelMat.append(float(curLine[-1]))
return dataMat,labelMat
def standRegres(xArr,yArr):
xMat = mat(xArr);yMat = mat(yArr).T #xMat:200*2, yMat:1*200
xTx = xMat.T*xMat #xTx:2*2
#print(xTx)
if linalg.det(xTx) == 0.0: # 判断行列式是否为0 linalg.det()计算行列式,,需要判断矩阵行列式不为零,否则不能直接求逆。
print("This matrix is singular,cannot do inverse") #这个矩阵是奇异的,不能做逆矩阵
return
ws = xTx.I * (xMat.T * yMat) #xTx.I,矩阵的逆矩阵,也可以写成 ws = linalg.solve(xTx,xMat.T * yMat)
#np.linalg.inv():矩阵求逆
#np.linalg.det():矩阵求行列式(标量)
#solve函数可以求解多元一次方程组
return ws
xArr,yArr = loadDataSet('ex0.txt')
#print(xArr)
shape(xArr)
(200, 2)
#print(yArr)
shape(yArr)
(200,)
ws=standRegres(xArr,yArr)
print(ws)
[[ 3.00774324]
[ 1.69532264]]
xMat = mat(xArr)
#print(xMat)
yMat = mat(yArr)
yHat = xMat * ws
import matplotlib.pyplot as plt #--绘图
fig=plt.figure()
ax=fig.add_subplot(111)
#print(xMat[:,1].flatten()) #flatten是numpy.ndarray.flatten的一个函数,即返回一个一维数组。
#print(yMat.A[0])
#print(yMat.T[:,0].flatten().A[0])
ax.scatter(xMat[:,1].flatten().A[0],yMat.T[:,0].flatten().A[0]) #绘--原始数据
<matplotlib.collections.PathCollection at 0x93cea20>
xCopy = xMat.copy()
xCopy.sort(0) #将点按照feature2升序排列,all featrue1=1.0
#print(xCopy)
yHat = xCopy * ws
ax.plot(xCopy[:,1],yHat)
[<matplotlib.lines.Line2D at 0x5a3a9b0>]
plt.show()
yHat = xMat * ws
corrcoef(yHat.T,yMat) #numpy的corrcoef (yEstimate , yActual) 来计算预测值和真实值的相关性。yHat和yMat的相关系数是0.98
array([[ 1. , 0.98647356],
[ 0.98647356, 1. ]])
局部加权线性回归(Locally Weighted Linear Regression,LWLR)
给待预测点附近的每个点赋予一定的权重,该算法解出回归系数w的形式如下:
ω^=(XTWX)−1XTWy
LWLR 使用“核”(与支持向量机中的核类似)来对附近点赋予更高的权重。最常用高斯核,对用权重如下:
ω(i,i)=exp⎝⎛−2k2∣∣∣x(i)−x∣∣∣⎠⎞
k=0.5 时,大部分的数据都用于训练回归模型,k=0.01,仅有很少数的局部点被用于训练回归模型
程序清单8-2 局部加权线性回归函数
def lwlr(testPoint,xArr,yArr,k=1.0):
xMat = mat(xArr);yMat=mat(yArr).T
m = shape(xMat)[0] #200 行
weights = mat(eye((m))) #创建1对角阵
for j in range(m):
diffMat = testPoint - xMat[j,:]
weights[j,j] = exp(diffMat*diffMat.T/(-2.0*k**2)) #权重大小以指数级衰减
xTx = xMat.T * (weights * xMat)
if linalg.det(xTx) == 0.0: # 判断行列式是否为0 linalg.det()计算行列式,,需要判断矩阵行列式不为零,否则不能直接求逆。
print("This matrix is singular,cannot do inverse") #这个矩阵是奇异的,不能做逆矩阵
return
ws = xTx.I * (xMat.T * (weights*yMat))
return testPoint * ws
def lwlrTest(testArr,xArr,yArr,k=1.0):
m = shape(testArr)[0]
yHat = zeros(m)
for i in range(m):
yHat[i] = lwlr(testArr[i],xArr,yArr,k)
return yHat
lwlr(xArr[0],xArr,yArr,1.0) # 对单点进行估计
print(xArr[0])
print(lwlr(xArr[0],xArr,yArr,1.0))
[1.0, 0.067732]
[[ 3.12204471]]
yArr[0]
3.176513
print(lwlr(xArr[0],xArr,yArr,0.001))
[[ 3.20175729]]
yHat = lwlrTest(xArr,xArr,yArr,0.003) #k = 0.003
xMat = mat(xArr)
srtInd = xMat[:,1].argsort(0) #rgsort函数返回的是数组值从小到大的索引值, #等价于argsort(xMat[:,1],0)
#print(srtInd)
xSort = xMat[srtInd][:,0,:] #200*2 #等价于xMat[srtInd.flatten().A[0]]
#print(xSort)
import matplotlib.pyplot as plt #--绘图
fig=plt.figure()
ax=fig.add_subplot(111)
ax.plot(xSort[:,1],yHat[srtInd]) #绘--预测数据
ax.scatter(xMat[:,1].flatten().A[0],mat(yArr).T.flatten().A[0],s=2,c='red')#绘--原始数据
plt.show()
yHat = lwlrTest(xArr,xArr,yArr,0.01)#k = 0.01
xMat = mat(xArr)
srtInd = xMat[:,1].argsort(0) #rgsort函数返回的是数组值从小到大的索引值, #等价于argsort(xMat[:,1],0)
#print(srtInd)
xSort = xMat[srtInd][:,0,:] #200*2 #等价于xMat[srtInd.flatten().A[0]]
#print(xSort)
import matplotlib.pyplot as plt #--绘图
fig=plt.figure()
ax=fig.add_subplot(111)
ax.plot(xSort[:,1],yHat[srtInd]) #绘--预测数据
ax.scatter(xMat[:,1].flatten().A[0],mat(yArr).T.flatten().A[0],s=2,c='red')#绘--原始数据
plt.show()
yHat = lwlrTest(xArr,xArr,yArr,1.0)#k = 1.0
xMat = mat(xArr)
srtInd = xMat[:,1].argsort(0) #rgsort函数返回的是数组值从小到大的索引值, #等价于argsort(xMat[:,1],0)
#print(srtInd)
xSort = xMat[srtInd][:,0,:] #200*2 #等价于xMat[srtInd.flatten().A[0]]
#print(xSort)
import matplotlib.pyplot as plt #--绘图
fig=plt.figure()
ax=fig.add_subplot(111)
ax.plot(xSort[:,1],yHat[srtInd]) #绘--预测数据
ax.scatter(xMat[:,1].flatten().A[0],mat(yArr).T.flatten().A[0],s=2,c='red')#绘--原始数据
plt.show()
预测鲍鱼年龄
def rssError(yArr,yHatArr):
return((yArr-yHatArr)**2).sum()
abX,abY = loadDataSet('abalone.txt')
yHat01 = lwlrTest(abX[0:99],abX[0:99],abY[0:99],0.1)
yHat1 = lwlrTest(abX[0:99],abX[0:99],abY[0:99],1)
yHat10 = lwlrTest(abX[0:99],abX[0:99],abY[0:99],10)
rssError(abY[0:99],yHat01.T)
56.825235689728842
rssError(abY[0:99],yHat1.T)
429.89056187006514
rssError(abY[0:99],yHat10.T)
549.11817088264513
yHat01 = lwlrTest(abX[100:199],abX[0:99],abY[0:99],0.1)
yHat1 = lwlrTest(abX[100:199],abX[0:99],abY[0:99],1)
yHat10 = lwlrTest(abX[100:199],abX[0:99],abY[0:99],10)
rssError(abY[100:199],yHat01.T)
41317.161723642595
rssError(abY[100:199],yHat1.T)
573.52614418976702
rssError(abY[100:199],yHat10.T)
517.57119053875977
ws = standRegres(abX[0:99],abY[0:99])
yHat = mat(abX[100:199])*ws
rssError(abY[100:199],yHat.T.A) # .A将矩阵转化为数组
518.63631532496379
岭回归使用了单位矩阵乘以常量λ,其中单位矩阵I,可以看到值1贯穿整个对角线,其余元素全是0,形象地在0构成的平面上有一天1组成的岭,回归系数计算公式
ω^=(XTX+λI)−1XTy
岭回归最先用来处理特征数多于样本的情况,现在也用于再估计总加入偏差,从而得到更好的估计,这里通过引入λ来限制所有ω之和,通过引入惩罚项,能够减少不重要的参数,这个技术在统计学中也叫做缩减(shrinkage)
程序清单8-3 岭回归
def ridgeRegres(xMat,yMat,lam = 0.2):
xTx = xMat.T*xMat #xTx:2*2
denom = xTx + eye(shape(xMat)[1])*lam
if linalg.det(xTx) == 0.0:
print("This matrix is singular,cannot do inverse")
return
ws = denom.I * (xMat.T * yMat)
return ws
def ridgeTest(xArr,yArr):
xMat = mat(xArr);yMat=mat(yArr).T
yMean = mean(yMat,0) #数据标准化
yMat = yMat - yMean
xMeans = mean(xMat,0)
xVar = var(xMat,0)
xMat = (xMat-xMeans)/xVar#所有特征减去各自的均值并除以方差
numTestPts = 30#取30个不同的lambda调用函数,30个不同的lambda值进行测试,选最优
wMat = zeros((numTestPts,shape(xMat)[1]))
for i in range(numTestPts):
ws = ridgeRegres(xMat,yMat,exp(i-10))
wMat[i,:] = ws.T
return wMat
ridgeWeights = ridgeTest(abX,abY)
#缩减效果图
import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.add_subplot(111)
ax.plot(ridgeWeights)
plt.show()
前向逐步回归算法的伪代码
数据标准化,使其分布满足0均值和单位方差
在每轮迭代过程中:
设置当前最小误差lowestError为正无穷:
对每个特征:
增大或缩小:
改变一个系数得到一个新的W
计算新W小的误差
如果误差Error小于当前最小误差lowestError:设置Wbest等于当前的W
如果所有向量都没被优化,增加迭代数目,继续下一次循环
程序清单8-4 前向逐步线性回归
def regularize(xMat):#regularize 标准化
inMat = xMat.copy()
inMeans= mean(inMat,0)
inVar = var(inMat,0)
inMat = (inMat - inMeans)/inVar
return inMat
def stageWise(xArr,yArr,eps = 0.01,numIt=100):
xMat = mat(xArr);yMat=mat(yArr).T
yMean = mean(yMat,0) #数据标准化
yMat = yMat - yMean
xMat = regularize(xMat)
m,n = shape(xMat)
returnMat = zeros((numIt,n))
ws = zeros((n,1))
wsTest = ws.copy()
wsMax = ws.copy()
for i in range(numIt):
print(ws.T)
lowestError = inf;
for j in range(n):
for sign in [-1,1]:
wsTest = ws.copy()
wsTest[j]+=eps*sign
yTest = xMat*wsTest
rssE = rssError(yMat.A,yTest.A)
if rssE < lowestError:
lowestError = rssE
wsMax = wsTest
ws = wsMax.copy()
returnMat[i,:] = ws.T
return returnMat
xArr, yArr = loadDataSet('abalone.txt')
#stageWeights=stageWise(xArr,yArr,0.001,5000)
import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.add_subplot(111)
ax.plot(stageWeights)
plt.show()
用回归法预测乐高套装的价格
(1)收集数据:用Google Shopping的API收集数据
(2)准备数据:返回的JSON数据中抽取价格
(3)分析数据: 可视化并观察数据
(4)训练算法:构建不同的模型,采用逐步线性回归和直接的线性回归模型
(5)测试算法:使用交叉验证测试不同的模型,来分析哪个效果最好
(6)使用算法:这次练习的目标就是生成数据模型
#原文中通过Google提供的API来抓取价格,但由于现在访问不了Google,所以,直接通过文本给的html文件直接读取价格信息。然后进一步进行分析预测。
程序清单8-5 购物信息的获取函数
from bs4 import BeautifulSoup
import numpy as np
import random
def scrapePage(retX, retY, inFile, yr, numPce, origPrc):
# 打开并读取HTML文件
with open(inFile, encoding='utf-8') as f:
html = f.read()
soup = BeautifulSoup(html)
i = 1
# 根据HTML页面结构进行解析
currentRow = soup.find_all('table', r = "%d" % i)
while(len(currentRow) != 0):
currentRow = soup.find_all('table', r = "%d" % i)
title = currentRow[0].find_all('a')[1].text
lwrTitle = title.lower()
# 查找是否有全新标签
if (lwrTitle.find('new') > -1) or (lwrTitle.find('nisb') > -1):
newFlag = 1.0
else:
newFlag = 0.0
# 查找是否已经标志出售,我们只收集已出售的数据
soldUnicde = currentRow[0].find_all('td')[3].find_all('span')
if len(soldUnicde) == 0:
print("商品 #%d 没有出售" % i)
else:
# 解析页面获取当前价格
soldPrice = currentRow[0].find_all('td')[4]
priceStr = soldPrice.text
priceStr = priceStr.replace('$','')
priceStr = priceStr.replace(',','')
if len(soldPrice) > 1:
priceStr = priceStr.replace('Free shipping', '')
sellingPrice = float(priceStr)
# 去掉不完整的套装价格
if sellingPrice > origPrc * 0.5:
print("%d\t%d\t%d\t%f\t%f" % (yr, numPce, newFlag, origPrc, sellingPrice))
retX.append([yr, numPce, newFlag, origPrc])
retY.append(sellingPrice)
i += 1
currentRow = soup.find_all('table', r = "%d" % i)
#分别抓取各网页数据
def setDataCollect(retX, retY):
scrapePage(retX, retY, 'lego8288.html', 2006, 800, 49.99)
scrapePage(retX, retY, 'lego10030.html', 2002, 3096, 269.99)
scrapePage(retX, retY, 'lego10179.html', 2007, 5195, 499.99)
scrapePage(retX, retY, 'lego10181.html', 2007, 3428, 199.99)
scrapePage(retX, retY, 'lego10189.html', 2008, 5922, 299.99)
scrapePage(retX, retY, 'lego10196.html', 2009, 3263, 249.99)
lgX = [];lgY=[]
setDataCollect(lgX,lgY)
E:\Anaconda3\lib\site-packages\bs4\__init__.py:181: UserWarning: No parser was explicitly specified, so I'm using the best available HTML parser for this system ("lxml"). This usually isn't a problem, but if you run this code on another system, or in a different virtual environment, it may use a different parser and behave differently.
The code that caused this warning is on line 193 of the file E:\Anaconda3\lib\runpy.py. To get rid of this warning, change code that looks like this:
BeautifulSoup(YOUR_MARKUP})
to this:
BeautifulSoup(YOUR_MARKUP, "lxml")
markup_type=markup_type))
2006 800 0 49.990000 85.000000
2006 800 0 49.990000 102.500000
2006 800 0 49.990000 77.000000
商品 #4 没有出售
2006 800 0 49.990000 162.500000
2002 3096 0 269.990000 699.990000
2002 3096 0 269.990000 602.000000
2002 3096 0 269.990000 515.000000
2002 3096 0 269.990000 510.000000
2002 3096 0 269.990000 375.000000
2002 3096 1 269.990000 1050.000000
2002 3096 0 269.990000 740.000000
2002 3096 1 269.990000 759.000000
2002 3096 0 269.990000 730.000000
2002 3096 1 269.990000 750.000000
商品 #11 没有出售
2007 5195 0 499.990000 910.000000
2007 5195 1 499.990000 1199.990000
2007 5195 0 499.990000 811.880000
商品 #4 没有出售
2007 5195 0 499.990000 1324.790000
2007 5195 1 499.990000 850.000000
2007 5195 1 499.990000 800.000000
2007 5195 0 499.990000 810.000000
2007 5195 1 499.990000 1075.000000
2007 5195 0 499.990000 1050.000000
2007 5195 1 499.990000 1199.990000
2007 5195 0 499.990000 1342.310000
2007 5195 1 499.990000 1000.000000
2007 5195 0 499.990000 1780.000000
2007 5195 0 499.990000 750.000000
商品 #16 没有出售
2007 5195 0 499.990000 2204.990000
商品 #18 没有出售
2007 5195 1 499.990000 925.000000
2007 5195 0 499.990000 860.000000
商品 #21 没有出售
商品 #22 没有出售
2007 5195 1 499.990000 1199.990000
2007 5195 1 499.990000 1099.990000
2007 5195 1 499.990000 1149.990000
2007 5195 1 499.990000 800.000000
2007 5195 1 499.990000 850.000000
2007 3428 0 199.990000 469.950000
2007 3428 0 199.990000 479.000000
2007 3428 0 199.990000 299.990000
2007 3428 0 199.990000 369.000000
2007 3428 1 199.990000 424.950000
2007 3428 1 199.990000 380.000000
2007 3428 0 199.990000 305.000000
2008 5922 1 299.990000 530.000000
商品 #2 没有出售
2008 5922 1 299.990000 599.950000
2008 5922 0 299.990000 510.000000
2008 5922 0 299.990000 423.000000
商品 #6 没有出售
商品 #7 没有出售
2008 5922 1 299.990000 599.990000
商品 #9 没有出售
2008 5922 1 299.990000 589.990000
2008 5922 1 299.990000 569.990000
2008 5922 1 299.990000 529.990000
2008 5922 0 299.990000 500.000000
2008 5922 1 299.990000 549.950000
2008 5922 0 299.990000 300.000000
商品 #16 没有出售
2009 3263 1 249.990000 380.000000
2009 3263 1 249.990000 399.000000
2009 3263 1 249.990000 427.990000
2009 3263 0 249.990000 360.000000
商品 #5 没有出售
商品 #6 没有出售
2009 3263 1 249.990000 399.000000
2009 3263 1 249.990000 399.950000
2009 3263 1 249.990000 499.990000
商品 #10 没有出售
2009 3263 0 249.990000 399.950000
商品 #12 没有出售
2009 3263 1 249.990000 331.510000
shape(lgX)
(63, 4)
#print(lgX)
lgX1 = mat(ones((63,5)))
lgX1[:,1:5] = mat(lgX)
lgX[0]
[2006, 800, 0.0, 49.99]
lgX1[0]
matrix([[ 1.00000000e+00, 2.00600000e+03, 8.00000000e+02,
0.00000000e+00, 4.99900000e+01]])
ws = standRegres(lgX1,lgY)
ws
matrix([[ 5.53199701e+04],
[ -2.75928219e+01],
[ -2.68392234e-02],
[ -1.12208481e+01],
[ 2.57604055e+00]])
lgX1[0]*ws
matrix([[ 76.07418847]])
ws
matrix([[ 5.53199701e+04],
[ -2.75928219e+01],
[ -2.68392234e-02],
[ -1.12208481e+01],
[ 2.57604055e+00]])
lgX1[-1]*ws
matrix([[ 431.17797665]])
lgX1[43]*ws
matrix([[ 516.20733099]])
程序清单8-6 交叉验证测试岭回归
def crossValidation(xArr,yArr,numVal = 10):
m = len(yArr)
indexList = list(range(m)) #代码这里要修改
#创建numVal*30的误差矩阵
##30的由来:ridgeTest()使用了30个不同的lambda值来创建不同的回归系数,即numTestPts = 30
errorMat = zeros((numVal,30))
for i in range(numVal):
#创建训练集和测试集容器
trainX = [];trainY = []
testX = [];testY =[]
#打乱索引顺序,实现随机选取训练集和测试集数据点
random.shuffle(indexList)
#数据分为训练集和测试集,#90%训练+10%测试
for j in range(m):
if j < m*0.9:
trainX.append(xArr[indexList[j]])
trainY.append(yArr[indexList[j]])
else:
testX.append(xArr[indexList[j]])
testY.append(yArr[indexList[j]])
wMat = ridgeTest(trainX,trainY)#获得30组ws向量
for k in range(30):
#用训练时的参数将测试数据标准化
matTestX = mat(testX);
matTrainX = mat(trainX)
meanTrain = mean(matTrainX,0)
varTrain = var(matTrainX,0)
matTestX = (matTestX - meanTrain)/varTrain
yEst = matTestX * mat(wMat[k,:]).T +mean(trainY)
errorMat[i,k]=rssError(yEst.T.A,array(testY))
#计算不同岭回归ws下errorMat的平均值,观察平均性能
#meanErrors:1*30矩阵
meanErrors=mean(errorMat,0)
minMean = float(min(meanErrors))
#nonzero(meanErrors==minMean)返回的是误差最小的索引,因此bestWeights为误差最小的那个w向量
bestWeights = wMat[nonzero(meanErrors == minMean)]
#岭回归使用了数据标准化,而standRegres没有,为了比较可视化,因此需要将数据还原
#标准化后 Xreg = (x-meanX)/var(x),预测y=Xreg*w+meanY
#因此,利用未标准化的x来计算y= x*w/var(x) - meanX*w/var(x) +meanY
#其中unReg=w/var
xMat = mat(xArr)
yMat = mat(yArr).T
meanX = mean(xMat,0)
varX = var(xMat,0)
unReg = bestWeights / varX
#数据还原
print("the best model from Ridge Regression is:\n",unReg)
#特别注意这里的sum函数,一定是np.sum,因为一般的sum只能对list求和,而这里的参数是matrix
print("with constant term:",-1*sum(multiply(meanX,unReg))+mean(yMat))
crossValidation(lgX,lgY,10)
the best model from Ridge Regression is:
[[ -3.34922409e+01 4.90836452e-04 1.90316935e+01 2.08853435e+00]]
with constant term: 67188.4053238
ridgeTest(lgX,lgY)
array([[ -1.45288906e+02, -8.39360442e+03, -3.28682450e+00,
4.42362406e+04],
[ -1.46649725e+02, -1.89952152e+03, -2.80638599e+00,
4.27891633e+04],
[ -1.44450432e+02, 8.55488076e+02, -1.35089285e+00,
4.00885735e+04],
[ -1.37402474e+02, 1.64217093e+03, 1.95840783e+00,
3.44932120e+04],
[ -1.24750588e+02, 1.44326171e+03, 7.62540167e+00,
2.50647592e+04],
[ -1.10234679e+02, 8.81842164e+02, 1.40617304e+01,
1.43874420e+04],
[ -9.96484167e+01, 4.17805568e+02, 1.87140361e+01,
6.66770425e+03],
[ -9.40345090e+01, 1.71289137e+02, 2.10844952e+01,
2.71206176e+03],
[ -9.11400659e+01, 6.57287394e+01, 2.20487105e+01,
1.03800465e+03],
[ -8.86246985e+01, 2.45452725e+01, 2.23181664e+01,
3.87564774e+02],
[ -8.41447674e+01, 9.05861459e+00, 2.21495534e+01,
1.43313895e+02],
[ -7.44804291e+01, 3.31863501e+00, 2.14607512e+01,
5.27810178e+01],
[ -5.68008473e+01, 1.20770663e+00, 2.00168153e+01,
1.93999701e+01],
[ -3.43546503e+01, 4.38238026e-01, 1.77836684e+01,
7.12719906e+00],
[ -1.62951276e+01, 1.59882766e-01, 1.48514658e+01,
2.62234165e+00],
[ -6.48291858e+00, 5.89025383e-02, 1.09847950e+01,
9.67404902e-01],
[ -2.35268585e+00, 2.18391027e-02, 6.61152257e+00,
3.57478187e-01],
[ -8.35001919e-01, 8.09519290e-03, 3.19552087e+00,
1.32007993e-01],
[ -2.99711902e-01, 2.99108326e-03, 1.33043325e+00,
4.86659524e-02],
[ -1.08982743e-01, 1.10249682e-03, 5.14449554e-01,
1.79199150e-02],
[ -3.99038878e-02, 4.05898142e-04, 1.92885670e-01,
6.59479857e-03],
[ -1.46534283e-02, 1.49365062e-04, 7.14631760e-02,
2.42642878e-03],
[ -5.38707897e-03, 5.49542829e-05, 2.63587872e-02,
8.92679468e-04],
[ -1.98130399e-03, 2.02173589e-05, 9.70622185e-03,
3.28404700e-04],
[ -7.28814363e-04, 7.43766021e-06, 3.57198872e-03,
1.20814188e-04],
[ -2.68106796e-04, 2.73617711e-06, 1.31423307e-03,
4.44451712e-05],
[ -9.86297565e-05, 1.00658531e-06, 4.83502591e-04,
1.63504803e-05],
[ -3.62836944e-05, 3.70302314e-07, 1.77873811e-04,
6.01500768e-06],
[ -1.33480028e-05, 1.36226645e-07, 6.54365445e-05,
2.21279795e-06],
[ -4.91045279e-06, 5.01149871e-08, 2.40728171e-05,
8.14042912e-07]])