ucore lab1_1

1.实验目的:

操作系统是一个软件,也需要通过某种机制加载并运行它。在这里我们将通过另外一个更加简单的软件-bootloader来完成这些工作。为此,我们需要完成一个能够切换到x86的保护模式并显示字符的bootloader,为启动操作系统ucore做准备。lab1提供了一个非常小的bootloader和ucore OS,整个bootloader执行代码小于512个字节,这样才能放到硬盘的主引导扇区中。通过分析和实现这个bootloader和ucore OS,读者可以了解到:

  • 计算机原理

    • CPU的编址与寻址: 基于分段机制的内存管理
    • CPU的中断机制
    • 外设:串口/并口/CGA,时钟,硬盘
  • Bootloader软件

    • 编译运行bootloader的过程
    • 调试bootloader的方法
    • PC启动bootloader的过程
    • ELF执行文件的格式和加载
    • 外设访问:读硬盘,在CGA上显示字符串
  • ucore OS软件

    • 编译运行ucore OS的过程
    • ucore OS的启动过程
    • 调试ucore OS的方法
    • 函数调用关系:在汇编级了解函数调用栈的结构和处理过程
    • 中断管理:与软件相关的中断处理
    • 外设管理:时钟

2.实验内容

练习1:理解通过make生成执行文件的过程。(要求在报告中写出对下述问题的回答)

列出本实验各练习中对应的OS原理的知识点,并说明本实验中的实现部分如何对应和体现了原理中的基本概念和关键知识点。

在此练习中,大家需要通过静态分析代码来了解:

  1. 操作系统镜像文件ucore.img是如何一步一步生成的?(需要比较详细地解释Makefile中每一条相关命令和命令参数的含义,以及说明命令导致的结果)
  2. 一个被系统认为是符合规范的硬盘主引导扇区的特征是什么?

补充材料:

如何调试Makefile

当执行make时,一般只会显示输出,不会显示make到底执行了哪些命令。

如想了解make执行了哪些命令,可以执行:

$ make "V="

要获取更多有关make的信息,可上网查询,并请执行

$ man make

练习1实验结果如下:

题号1的结果(操作系统镜像文件ucore.img是如何一步一步生成的?(需要比较详细地解释Makefile中每一条相关命令和命令参数的含义,以及说明命令导致的结果)

shiyanlou:lab1_result/ (master) $ make "V="                          [11:29:45]
+ cc kern/init/init.c
gcc -Ikern/init/ -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc  -fno-stack-protector -Ilibs/ -Ikern/debug/ -Ikern/driver/ -Ikern/trap/ -Ikern/mm/ -c kern/init/init.c -o obj/kern/init/init.o
+ cc kern/libs/readline.c
gcc -Ikern/libs/ -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc  -fno-stack-protector -Ilibs/ -Ikern/debug/ -Ikern/driver/ -Ikern/trap/ -Ikern/mm/ -c kern/libs/readline.c -o obj/kern/libs/readline.o
+ cc kern/libs/stdio.c
gcc -Ikern/libs/ -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc  -fno-stack-protector -Ilibs/ -Ikern/debug/ -Ikern/driver/ -Ikern/trap/ -Ikern/mm/ -c kern/libs/stdio.c -o obj/kern/libs/stdio.o
+ cc kern/debug/kdebug.c
gcc -Ikern/debug/ -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc  -fno-stack-protector -Ilibs/ -Ikern/debug/ -Ikern/driver/ -Ikern/trap/ -Ikern/mm/ -c kern/debug/kdebug.c -o obj/kern/debug/kdebug.o
+ cc kern/debug/kmonitor.c
gcc -Ikern/debug/ -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc  -fno-stack-protector -Ilibs/ -Ikern/debug/ -Ikern/driver/ -Ikern/trap/ -Ikern/mm/ -c kern/debug/kmonitor.c -o obj/kern/debug/kmonitor.o
+ cc kern/debug/panic.c
gcc -Ikern/debug/ -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc  -fno-stack-protector -Ilibs/ -Ikern/debug/ -Ikern/driver/ -Ikern/trap/ -Ikern/mm/ -c kern/debug/panic.c -o obj/kern/debug/panic.o
+ cc kern/driver/clock.c
gcc -Ikern/driver/ -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc  -fno-stack-protector -Ilibs/ -Ikern/debug/ -Ikern/driver/ -Ikern/trap/ -Ikern/mm/ -c kern/driver/clock.c -o obj/kern/driver/clock.o
+ cc kern/driver/console.c
gcc -Ikern/driver/ -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc  -fno-stack-protector -Ilibs/ -Ikern/debug/ -Ikern/driver/ -Ikern/trap/ -Ikern/mm/ -c kern/driver/console.c -o obj/kern/driver/console.o
+ cc kern/driver/intr.c
gcc -Ikern/driver/ -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc  -fno-stack-protector -Ilibs/ -Ikern/debug/ -Ikern/driver/ -Ikern/trap/ -Ikern/mm/ -c kern/driver/intr.c -o obj/kern/driver/intr.o
+ cc kern/driver/picirq.c
gcc -Ikern/driver/ -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc  -fno-stack-protector -Ilibs/ -Ikern/debug/ -Ikern/driver/ -Ikern/trap/ -Ikern/mm/ -c kern/driver/picirq.c -o obj/kern/driver/picirq.o
+ cc kern/trap/trap.c
gcc -Ikern/trap/ -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc  -fno-stack-protector -Ilibs/ -Ikern/debug/ -Ikern/driver/ -Ikern/trap/ -Ikern/mm/ -c kern/trap/trap.c -o obj/kern/trap/trap.o
+ cc kern/trap/trapentry.S
gcc -Ikern/trap/ -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc  -fno-stack-protector -Ilibs/ -Ikern/debug/ -Ikern/driver/ -Ikern/trap/ -Ikern/mm/ -c kern/trap/trapentry.S -o obj/kern/trap/trapentry.o
+ cc kern/trap/vectors.S
gcc -Ikern/trap/ -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc  -fno-stack-protector -Ilibs/ -Ikern/debug/ -Ikern/driver/ -Ikern/trap/ -Ikern/mm/ -c kern/trap/vectors.S -o obj/kern/trap/vectors.o
+ cc kern/mm/pmm.c
gcc -Ikern/mm/ -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc  -fno-stack-protector -Ilibs/ -Ikern/debug/ -Ikern/driver/ -Ikern/trap/ -Ikern/mm/ -c kern/mm/pmm.c -o obj/kern/mm/pmm.o
+ cc libs/printfmt.c
gcc -Ilibs/ -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc  -fno-stack-protector -Ilibs/  -c libs/printfmt.c -o obj/libs/printfmt.o
+ cc libs/string.c
gcc -Ilibs/ -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc  -fno-stack-protector -Ilibs/  -c libs/string.c -o obj/libs/string.o
+ ld bin/kernel
ld -m    elf_i386 -nostdlib -T tools/kernel.ld -o bin/kernel  obj/kern/init/init.o obj/kern/libs/readline.o obj/kern/libs/stdio.o obj/kern/debug/kdebug.o obj/kern/debug/kmonitor.o obj/kern/debug/panic.o obj/kern/driver/clock.o obj/kern/driver/console.o obj/kern/driver/intr.o obj/kern/driver/picirq.o obj/kern/trap/trap.o obj/kern/trap/trapentry.o obj/kern/trap/vectors.o obj/kern/mm/pmm.o  obj/libs/printfmt.o obj/libs/string.o
+ cc boot/bootasm.S
gcc -Iboot/ -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc  -fno-stack-protector -Ilibs/ -Os -nostdinc -c boot/bootasm.S -o obj/boot/bootasm.o
+ cc boot/bootmain.c
gcc -Iboot/ -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc  -fno-stack-protector -Ilibs/ -Os -nostdinc -c boot/bootmain.c -o obj/boot/bootmain.o
+ cc tools/sign.c
gcc -Itools/ -g -Wall -O2 -c tools/sign.c -o obj/sign/tools/sign.o
gcc -g -Wall -O2 obj/sign/tools/sign.o -o bin/sign
+ ld bin/bootblock
ld -m    elf_i386 -nostdlib -N -e start -Ttext 0x7C00 obj/boot/bootasm.o obj/boot/bootmain.o -o obj/bootblock.o
'obj/bootblock.out' size: 488 bytes
build 512 bytes boot sector: 'bin/bootblock' success!
dd if=/dev/zero of=bin/ucore.img count=10000
记录了10000+0 的读入
记录了10000+0 的写出
5120000字节(5.1 MB)已复制,0.0863728 秒,59.3 MB/秒
dd if=bin/bootblock of=bin/ucore.img conv=notrunc
记录了1+0 的读入
记录了1+0 的写出
512字节(512 B)已复制,0.000152941 秒,3.3 MB/秒
dd if=bin/kernel of=bin/ucore.img seek=1 conv=notrunc
记录了146+1 的读入
记录了146+1 的写出
74923字节(75 kB)已复制,0.0028817 秒,26.0 MB/秒
  • 可以看到,gcc把各个.c文件变成.o的目标文件。如:
+ cc kern/init/init.c
gcc -Ikern/init/ -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc  -fno-stack-protector -Ilibs/ -Ikern/debug/ -Ikern/driver/ -Ikern/trap/ -Ikern/mm/ -c kern/init/init.c -o obj/kern/init/init.o
  • ld把.o的目标文件转换成执行程序,如:(obj/bootblock.out可以理解为bootloader的执行程序,bin/kernel是ucore的组成部分)
+ ld bin/kernel
ld -m    elf_i386 -nostdlib -T tools/kernel.ld -o bin/kernel  obj/kern/init/init.o obj/kern/libs/readline.o obj/kern/libs/stdio.o obj/kern/debug/kdebug.o obj/kern/debug/kmonitor.o obj/kern/debug/panic.o obj/kern/driver/clock.o obj/kern/driver/console.o obj/kern/driver/intr.o obj/kern/driver/picirq.o obj/kern/trap/trap.o obj/kern/trap/trapentry.o obj/kern/trap/vectors.o obj/kern/mm/pmm.o  obj/libs/printfmt.o obj/libs/string.o
      
+ ld bin/bootblock
ld -m    elf_i386 -nostdlib -N -e start -Ttext 0x7C00 obj/boot/bootasm.o obj/boot/bootmain.o -o obj/bootblock.o
'obj/bootblock.out' size: 488 bytes
build 512 bytes boot sector: 'bin/bootblock' success!
  • dd则是把bootloader和kernel复制到磁盘(此处为虚拟磁盘ucore.img)中,如:
dd if=/dev/zero of=bin/ucore.img count=10000
记录了10000+0 的读入
记录了10000+0 的写出
5120000字节(5.1 MB)已复制,0.0863728 秒,59.3 MB/秒
dd if=bin/bootblock of=bin/ucore.img conv=notrunc
记录了1+0 的读入
记录了1+0 的写出
512字节(512 B)已复制,0.000152941 秒,3.3 MB/秒
dd if=bin/kernel of=bin/ucore.img seek=1 conv=notrunc
记录了146+1 的读入
记录了146+1 的写出
74923字节(75 kB)已复制,0.0028817 秒,26.0 MB/秒

题号2的结果(一个被系统认为是符合规范的硬盘主引导扇区的特征是什么?)

在tool/sign.c文件中

#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <sys/stat.h>

int
main(int argc, char *argv[]) {
    struct stat st;

    if (argc != 3) {
        fprintf(stderr, "Usage: <input filename> <output filename>\n");
        return -1;
    }
      
    // 如果不是两个参数,则提示用户正确的输入的格式
    // argc=3表示参数个数为2
      
    if (stat(argv[1], &st) != 0) {
        fprintf(stderr, "Error opening file '%s': %s\n", argv[1], strerror(errno));
        return -1;
    }

    // 用stat函数将第一个文件的信息放入st中
    // int stat(const char *path, struct stat *buf)用法:
    //        – 参数*path:文件路径
    //        – 参数*buf:文件信息
    //        – 返回值:成功为0,否则为-1

    printf("'%s' size: %lld bytes\n", argv[1], (long long)st.st_size);

    if (st.st_size > 510) {
        fprintf(stderr, "%lld >> 510!!\n", (long long)st.st_size);
        return -1;
    }

    // 第1点的出处
    // 不接受第一个文件的大小大于510 bytes

    char buf[512];
    memset(buf, 0, sizeof(buf));

    FILE *ifp = fopen(argv[1], "rb");
    int size = fread(buf, 1, st.st_size, ifp);

    // 把ifp文件中的所有内容读到buf数组中,并将读入的byte数赋值给size
    // fread的用法:size_t fread( void *buffer, size_t size, size_t count, FILE *stream );
    //       - 返回读入的byte数
    //       - 从给定输入流stream读取最多count个对象到数组buffer中(相当于以对每个对象调用size次fgetc),把buffer当作unsigned char数组并顺序保存结果。流的文件位置指示器前进读取的字节数。
    //       - 若出现错误,则流的文件位置指示器的位置不确定。若没有完整地读入最后一个元素,则其值不确定。

    if (size != st.st_size) {
        fprintf(stderr, "read '%s' error, size is %d.\n", argv[1], size);
        return -1;
    }

    fclose(ifp);

    buf[510] = 0x55;
    buf[511] = 0xAA;
    
    // 第2点的出处

    FILE *ofp = fopen(argv[2], "wb+");
    size = fwrite(buf, 1, 512, ofp);
    if (size != 512) {
        fprintf(stderr, "write '%s' error, size is %d.\n", argv[2], size);
        return -1;
    }
    fclose(ofp);
    printf("build 512 bytes boot sector: '%s' success!\n", argv[2]);
    return 0;
}

#include <sys/stat.h>一句引用的头文件包含stat结构体定义如下:

      struct stat {
            mode_t     st_mode;       //文件对应的模式,文件,目录等
            ino_t      st_ino;        //inode节点号
            dev_t      st_dev;        //设备号码
            dev_t      st_rdev;       //特殊设备号码
            nlink_t    st_nlink;      //文件的连接数
            uid_t      st_uid;        //文件所有者
            gid_t      st_gid;        //文件所有者对应的组
            off_t      st_size;       //普通文件,对应的文件字节数
            time_t     st_atime;      //文件最后被访问的时间
            time_t     st_mtime;      //文件内容最后被修改的时间
            time_t     st_ctime;      //文件状态改变时间
            blksize_t  st_blksize;    //文件内容对应的块大小
            blkcnt_t   st_blocks;     //伟建内容对应的块数量
      };

通过分析可知,一个被系统认为是符合规范的硬盘主引导扇区的特征如下:
1. 大小为正好512byte
2. 第511字节为0x55,第512字节为0xAA

上一篇:Swift 添加KVO


下一篇:软件构造Lab1-Part1总结