练习1:实现 first-fit 连续物理内存分配算法(需要编程)
物理页面的结构体如下:
/* *
* struct Page - Page descriptor structures. Each Page describes one
* physical page. In kern/mm/pmm.h, you can find lots of useful functions
* that convert Page to other data types, such as phyical address.
* 每一Page结构体描述一个物理页面
* */
struct Page {
int ref; // page frame's reference counter 该物理页面被引用的次数
uint32_t flags; // array of flags that describe the status of the page frame
unsigned int property; // the num of free block, used in first fit pm manager 连续内存空闲块的大小
list_entry_t page_link; // free list link
};
该结构四个成员变量意义如下:
1、ref
表示这样页被页表的引用记数,应该就是映射此物理页的虚拟页个数。一旦某页表中有一个页表项设置了虚拟页到这个Page
管理的物理页的映射关系,就会把Page
的ref
加一。反之,若是解除,那就减一。
2、flags
表示此物理页的状态标记,有两个标志位,第一个表示是否被保留,如果被保留了则设为1(比如内核代码占用的空间)。第二个表示此页是否是free的。如果设置为1,表示这页是free的,可以被分配;如果设置为0,表示这页已经被分配出去了,不能被再二次分配。
3、property
用来记录某连续内存空闲块的大小,这里需要注意的是用到此成员变量的这个Page一定是连续内存块的开始地址(第一页的地址)。
4、page_link
是便于把多个连续内存空闲块链接在一起的双向链表指针,连续内存空闲块利用这个页的成员变量page_link
来链接比它地址小和大的其他连续内存空闲块
其中链表结点list_entry_t
的定义如下:
struct list_entry {
struct list_entry *prev, *next;
};
typedef struct list_entry list_entry_t;
Page
链表有一个表头,负责管理所有的空闲内存块,它位于kern/mm/memlayout.h
:
/* free_area_t - maintains a doubly linked list to record free (unused) pages */
typedef struct {
list_entry_t free_list; // the list header
unsigned int nr_free; // # of free pages in this free list
} free_area_t;
-
free_list
是一个list_entry结构的双向链表指针 -
nr_free
则记录当前空闲页的个数
我们第一个实验需要完成的主要是default_pmm.c
中的default_init
,default_init_memmap
,default_alloc_pages
, default_free_pages
几个函数的修改。
以下为各函数的实现:
/* In the First Fit algorithm, the allocator keeps a list of free blocks
* (known as the free list). Once receiving a allocation request for memory,
* it scans along the list for the first block that is large enough to satisfy
* the request. If the chosen block is significantly larger than requested, it
* is usually splitted, and the remainder will be added into the list as
* another free block.
* Please refer to Page 196~198, Section 8.2 of Yan Wei Min's Chinese book
* "Data Structure -- C programming language".
*/
// LAB2 EXERCISE 1: YOUR CODE
// you should rewrite functions: `default_init`, `default_init_memmap`,
// `default_alloc_pages`, `default_free_pages`.
/*
* Details of FFMA
* (1) Preparation:
* In order to implement the First-Fit Memory Allocation (FFMA), we should
* manage the free memory blocks using a list. The struct `free_area_t` is used
* for the management of free memory blocks.
* First, you should get familiar with the struct `list` in list.h. Struct
* `list` is a simple doubly linked list implementation. You should know how to
* USE `list_init`, `list_add`(`list_add_after`), `list_add_before`, `list_del`,
* `list_next`, `list_prev`.
* There's a tricky method that is to transform a general `list` struct to a
* special struct (such as struct `page`), using the following MACROs: `le2page`
* (in memlayout.h), (and in future labs: `le2vma` (in vmm.h), `le2proc` (in
* proc.h), etc).
* 利用宏le2page可以由当前链表结点得到当前的Page结构体
*/
free_area_t free_area;
#define free_list (free_area.free_list)
#define nr_free (free_area.nr_free)
/*
* (2) `default_init`:
* You can reuse the demo `default_init` function to initialize the `free_list`
* and set `nr_free` to 0. `free_list` is used to record the free memory blocks.
* `nr_free` is the total number of the free memory blocks.
*/
static void
default_init(void) {
list_init(&free_list); //对链表进行初始化
nr_free = 0;
}
/*
* (3) `default_init_memmap`: 初始化管理空闲内存页的数据结构
* CALL GRAPH: `kern_init` --> `pmm_init` --> `page_init` --> `init_memmap` -->
* `pmm_manager` --> `init_memmap`.
* This function is used to initialize a free block (with parameter `addr_base`,
* `page_number`). In order to initialize a free block, firstly, you should
* initialize each page (defined in memlayout.h) in this free block. This
* procedure includes: 该函数用于初始化空闲块。应该对空闲块的每一页进行初始化。应进行如下工作:
* - Setting the bit `PG_property` of `p->flags`, which means this page is
* valid. P.S. In function `pmm_init` (in pmm.c), the bit `PG_reserved` of
* `p->flags` is already set.
* 将 flags 标志设置为 PG_property,表明该页可用,需要注意的是 pmm_init 中 PG_reserved 位已经设置过了
* - If this page is free and is not the first page of a free block,
* `p->property` should be set to 0.
* 如果该页空闲并且不是空闲块的第一页,property属性应设置为0
* - If this page is free and is the first page of a free block, `p->property`
* should be set to be the total number of pages in the block.
* 如果该页是空闲块的第一页,property属性应该设置为空闲块中的页数
* - `p->ref` should be 0, because now `p` is free and has no reference.
* After that, We can use `p->page_link` to link this page into `free_list`.
* (e.g.: `list_add_before(&free_list, &(p->page_link));` )
* ref应被设置为0,因为这些页面是空闲的,之后我们可以用链表结点将页面连接到free_list中
* Finally, we should update the sum of the free memory blocks: `nr_free += n`.
* 最后更新空闲块的个数
*/
static void
default_init_memmap(struct Page *base, size_t n) {
assert(n > 0);
struct Page *p = base;
for (; p != base + n; p ++) {
assert(PageReserved(p));//确认本页是否为保留页
//设置标志位
p->flags = 0;
SetPageProperty(p);
p->property = 0;
set_page_ref(p, 0);//清空引用
list_add_before(&free_list, &(p->page_link));//插入空闲页的链表里面
}
nr_free += n; //说明连续有n个空闲块,属于空闲链表
base->property=n; //连续内存空闲块的大小为n,属于物理页管理链表
}
/*
* (4) `default_alloc_pages`:
* Search for the first free block (block size >= n) in the free list and reszie
* the block found, returning the address of this block as the address required by
* `malloc`.
* (4.1)
* So you should search the free list like this:
* list_entry_t le = &free_list;
* while((le=list_next(le)) != &free_list) {
* ...
* (4.1.1)
* In the while loop, get the struct `page` and check if `p->property`
* (recording the num of free pages in this block) >= n.
* struct Page *p = le2page(le, page_link);
* if(p->property >= n){ ...
* (4.1.2)
* If we find this `p`, it means we've found a free block with its size
* >= n, whose first `n` pages can be malloced. Some flag bits of this page
* should be set as the following: `PG_reserved = 1`, `PG_property = 0`.
* Then, unlink the pages from `free_list`.
* (4.1.2.1)
* If `p->property > n`, we should re-calculate number of the rest
* pages of this free block. (e.g.: `le2page(le,page_link))->property
* = p->property - n;`)
* (4.1.3)
* Re-caluclate `nr_free` (number of the the rest of all free block).
* (4.1.4)
* return `p`.
* (4.2)
* If we can not find a free block with its size >=n, then return NULL.
*/
static struct Page *default_alloc_pages(size_t n) {
assert(n > 0);
if (n > nr_free) { //如果所有的空闲页的加起来的大小都不够,那直接返回NULL
return NULL;
}
list_entry_t *le, *len;
le = &free_list; //从空闲块链表的头指针开始
while((le=list_next(le)) != &free_list) {//依次往下寻找直到回到头指针处,即已经遍历一次
struct Page *p = le2page(le, page_link);//将地址转换成页的结构
if(p->property >= n){ //由于是first-fit,则遇到的第一个大于N的块就选中即可
int i;
for(i=0;i<n;i++){//递归把选中的空闲块链表中的每一个页结构初始化
len = list_next(le);
struct Page *pp = le2page(le, page_link);
SetPageReserved(pp);
ClearPageProperty(pp);
list_del(le);//从空闲页链表中删除这个双向链表指针
le = len;
}
if(p->property>n){
(le2page(le,page_link))->property = p->property - n;//如果选中的第一个连续的块大于n,只取其中的大小为n的块
}
ClearPageProperty(p);
SetPageReserved(p);
nr_free -= n;//当前空闲页的数目减n
return p;
}
}
return NULL;//没有大于等于n的连续空闲页块,返回空
}
/*
* (5) `default_free_pages`:
* re-link the pages into the free list, and may merge small free blocks into
* the big ones.
* (5.1)
* According to the base address of the withdrawed blocks, search the free
* list for its correct position (with address from low to high), and insert
* the pages. (May use `list_next`, `le2page`, `list_add_before`)
* (5.2)
* Reset the fields of the pages, such as `p->ref` and `p->flags` (PageProperty)
* (5.3)
* Try to merge blocks at lower or higher addresses. Notice: This should
* change some pages' `p->property` correctly.
*/
static void
default_free_pages(struct Page *base, size_t n) {
assert(n > 0);
struct Page *p = base;
for (; p != base + n; p ++) {
assert(!PageReserved(p) && !PageProperty(p));
p->flags = 0;
set_page_ref(p, 0);
}
base->property = n; // 开头的页面property设置为页面数
SetPageProperty(base);
list_entry_t *le = list_next(&free_list);
while (le != &free_list) {
p = le2page(le, page_link);
le = list_next(le);
//两种需要合并空闲块的情况,先将需要被合并的链表结点取出
if (base + base->property == p) {
base->property += p->property;
ClearPageProperty(p);
list_del(&(p->page_link));
}
else if (p + p->property == base) {
p->property += base->property;
ClearPageProperty(base);
base = p;
list_del(&(p->page_link));
}
}
nr_free += n;
le = list_next(&free_list);
while (le != &free_list) {
p = le2page(le, page_link);
if (base + base->property <= p) {
assert(base + base->property != p);
break;
}
le = list_next(le);
}
// 将空闲页面结点插入到空闲页面链表中
list_add_before(le, &(base->page_link));
}
static size_t
default_nr_free_pages(void) {
return nr_free;
}
练习2:实现寻找虚拟地址对应的页表项(需要编程
这里我们需要实现的是get_pte
函数,函数找到一个虚地址对应的二级页表项的内核虚地址,如果此二级页表项不存在,则分配一个包含此项的二级页表。
由于我们已经具有了一个物理内存页管理器default_pmm_manager
,我们就可以用它来获得所需的空闲物理页。
在二级页表结构中,页目录表占4KB空间,ucore就可通过default_pmm_manager
的default_alloc_pages
函数获得一个空闲物理页,这个页的起始物理地址就是页目录表的起始地址。同理,ucore也通过这种方式获得各个页表所需的空间。页表的空间大小取决于页表要管理的物理页数n,一个页表项(32位,即4字节)可管理一个物理页,页表需要占 n/1024 物理页空间(向上取整)。这样页目录表和页表所占的总大小约为 4096+4∗n 字节。
根据LAZY,**这里我们并没有一开始就存在所有的二级页表,而是等到需要的时候再添加对应的二级页表。**当建立从一级页表到二级页表的映射时,需要注意设置控制位。这里应该设置同时设置 上PTE_U、PTE_W 和 PTE_P(定义可在mm/mmu.h)。如果原来就有二级页表,或者新建立了页表,则只需返回对应项的地址即可。
如果 create参数为 0,则get_pte返回NULL;如果 create参数不为 0,则 get_pte 需要申请一个新的物理页。
线性地址的组成:
// A linear address 'la' has a three-part structure as follows:
//
// +--------10------+-------10-------+---------12----------+
// | Page Directory | Page Table | Offset within Page |
// | Index | Index | |
// +----------------+----------------+---------------------+
// \--- PDX(la) --/ \--- PTX(la) --/ \---- PGOFF(la) ----/
// \----------- PPN(la) -----------/
//
// The PDX, PTX, PGOFF, and PPN macros decompose linear addresses as shown.
// To construct a linear address la from PDX(la), PTX(la), and PGOFF(la),
// use PGADDR(PDX(la), PTX(la), PGOFF(la)).
一些会用到的宏和函数:
MACROs or Functions:
PDX(la) = the index of page directory entry of VIRTUAL ADDRESS la. 返回虚拟地址的一级页表索引
KADDR(pa) : takes a physical address and returns the corresponding kernel virtual address. 返回物理地址pa的虚拟地址
set_page_ref(page,1) : means the page be referenced by one time 设置page引用次数为1
page2pa(page): get the physical address of memory which this (struct Page *) page manages 得到page管理的物理地址
struct Page * alloc_page() : allocation a page 分配一页
memset(void *s, char c, size_t n) : sets the first n bytes of the memory area pointed by s to the specified value c.设置s指向的地址前n个字节为c
get_pte
函数的实现如下:
pte_t *
get_pte(pde_t *pgdir, uintptr_t la, bool create) { // get page table entry 寻找线性地址对应的页表项,如果不存在,则分配新物理页面给
pde_t *pdep = &pgdir[PDX(la)]; // (1) find page directory entry PDX(la)找到线性地址的一级页表的索引,&pgdir[PDX(la)]得到二级页表表项的指针
if (!(*pdep & PTE_P)) { // (2) check if entry is not present 检查二级页表的页面是否在内存中
struct Page *page; //page将要存的是二级页表
if (!create || (page = alloc_page()) == NULL) { // (3) check if creating is needed, then alloc page for page table 如果不用分配或分配页面失败
return NULL;
}
set_page_ref(page, 1); // (4) set page reference 设置页面引用次数
uintptr_t pa = page2pa(page); // (5) get linear address of page 得到该物理页面的线性地址
//注释中给了提示,If you need to visit a physical address, please use KADDR()
memset(KADDR(pa), 0, PGSIZE); // (6) clear page content using memset 初始化该物理页面的内容
*pdep = pa | PTE_U | PTE_W | PTE_P; // (7) set page directory entry's permission 设置可读、可写、存在位
}
return &((pte_t *)KADDR(PDE_ADDR(*pdep)))[PTX(la)]; // (8) return page table entry 返回页面的页表项
//KADDR(PDE_ADDR(*pdep))找到一级页表表项的物理地址,再将物理地址转化为虚拟地址
//PTX(la)得到虚拟地址la的页表项索引,则KADDR(PDE_ADDR(*pdep)))[PTX(la)]就是页表项
//最后返回虚拟地址la对应的页表项的地址,该页表项存的是物理页面的地址
}
练习3:释放某虚地址所在的页并取消对应二级页表项的映射(需要编程
当释放一个包含某虚地址的物理内存页时,需要让对应此物理内存页的管理数据结构Page做相关的清除处理,使得此物理内存页成为空闲;另外还需把表示虚地址与物理地址对应关系的二级页表项清除。
//page_remove_pte - free a Page struct which is related linear address la 解除物理页面和线性地址la的联系
// - and clean(invalidate) pte which is related to linear address la 清除和线性地址la相关的页表项
//note: PT is changed, so the TLB need to be invalidate 页表改变了,需要将TLB无效化
static inline void
page_remove_pte(pde_t *pgdir, uintptr_t la, pte_t *ptep) {
/* LAB2 EXERCISE 3: YOUR CODE
*
* Please check if ptep is valid, and tlb must be manually updated if mapping is updated
*
* Maybe you want help comment, BELOW comments can help you finish the code
*
* Some Useful MACROs and DEFINEs, you can use them in below implementation.
* MACROs or Functions:
* struct Page *page pte2page(*ptep): get the according page from the value of a ptep
* free_page : free a page
* page_ref_dec(page) : decrease page->ref. NOTICE: ff page->ref == 0 , then this page should be free.
* tlb_invalidate(pde_t *pgdir, uintptr_t la) : Invalidate a TLB entry, but only if the page tables being
* edited are the ones currently in use by the processor.
* DEFINEs:
* PTE_P 0x001 // page table/directory entry flags bit : Present
*/
if (*ptep & PTE_P) { //如果页表项存在
struct Page *page = pte2page(*ptep); //找到页表项对应的物理页面
if (page_ref_dec(page) == 0) { //如果没有页面引用该物理页面了
free_page(page); //释放该页
}
*ptep = 0; //二级页表表项清零
tlb_invalidate(pgdir, la); //当修改的页表是进程正在使用的页表,使TLB中对应的项无效
}
}