# 数据集 class MNISTLoader(): def __init__(self): mnist = tf.keras.datasets.mnist (self.train_data, self.train_label), (self.test_data, self.test_label) = mnist.load_data() # MNIST中的图像默认为uint8(0-255的数字)。以下代码将其归一化到0-1之间的浮点数,并在最后增加一维作为颜色通道 self.train_data = np.expand_dims(self.train_data.astype(np.float32) / 255.0, axis=-1) # [60000, 28, 28, 1]expand_dims最后一维升维 self.test_data = np.expand_dims(self.test_data.astype(np.float32) / 255.0, axis=-1) # [10000, 28, 28, 1] self.train_label = self.train_label.astype(np.int32) # [60000] self.test_label = self.test_label.astype(np.int32) # [10000] self.num_train_data, self.num_test_data = self.train_data.shape[0], self.test_data.shape[0] def get_batch(self, batch_size): # 从数据集中随机取出batch_size个元素并返回 index = np.random.randint(0, self.num_train_data, batch_size) return self.train_data[index, :], self.train_label[index] # 模型定义 class MLP(tf.keras.Model): def __init__(self): super().__init__() self.flatten = tf.keras.layers.Flatten() # Flatten层将除第一维(batch_size)以外的维度展平 self.dense1 = tf.keras.layers.Dense(units=100, activation=tf.nn.relu) self.dense2 = tf.keras.layers.Dense(units=10) def call(self, inputs): # [batch_size, 28, 28, 1] x = self.flatten(inputs) # [batch_size, 784] x = self.dense1(x) # [batch_size, 100] x = self.dense2(x) # [batch_size, 10] output = tf.nn.softmax(x) return output # 长参定义及初始化 num_epochs = 5 batch_size = 50 learning_rate = 0.001 model = MLP() data_loader = MNISTLoader() optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) #模型训练 num_batches = int(data_loader.num_train_data // batch_size * num_epochs) for batch_index in range(num_batches): X, y = data_loader.get_batch(batch_size) with tf.GradientTape() as tape: y_pred = model(X) loss = tf.keras.losses.sparse_categorical_crossentropy(y_true=y, y_pred=y_pred)#交叉熵损失函数 loss = tf.reduce_mean(loss) print("batch %d: loss %f" % (batch_index, loss.numpy())) grads = tape.gradient(loss, model.variables) optimizer.apply_gradients(grads_and_vars=zip(grads, model.variables)) # 模型评估 sparse_categorical_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()#模型评估器metrics.SparseCategoricalAccuracy num_batches = int(data_loader.num_test_data // batch_size) for batch_index in range(num_batches): start_index, end_index = batch_index * batch_size, (batch_index + 1) * batch_size y_pred = model.predict(data_loader.test_data[start_index: end_index]) sparse_categorical_accuracy.update_state(y_true=data_loader.test_label[start_index: end_index], y_pred=y_pred) print("test accuracy: %f" % sparse_categorical_accuracy.result()) #评估结果输出