激光雷达多模态融合相关

目录

KeyWords: 环境感知,多模态融合

核心参考:

知乎专栏——传感器融合:激光雷达+摄像头
综述论文
论文导读

0.为何要融合

1. 具体应用

深度补全

语义分割

目标检测及跟踪

特种场景
???真的能做得更好
找找应用场景!

未来趋势

2D——3D

单任务——多任务

信号级——多级融合

早期融合

晚期融合

时间上下文

性能相关

融合数据的特征/信号表示形式(Feature/Signal Representation)

几何约束

时间上下文Encoding Temporal Context

NAS

工程上

外参自校准

相机内参+相机&LiDAR外参
运动引导96+无目标97

时间同步

晶振时间戳(基本完备)

深度补全

激光点云具有稀疏性,进行上采样
同甘融合来引导上采样
encoder-decoder结构

3D目标检测

激光雷达多模态融合相关

2D、3D语义分割、实例分割

激光雷达多模态融合相关

Tracking

融合策略

决策层融合

决策+特征层融合

特征层融合

参考文献

[1] Cui et.al., Deep Learning for Image and Point Cloud Fusion in Autonomous Driving: A Review, 2020.
[2] Qi et.al., Frustum Pointnets for 3d Object Detection from RGB-D Data, 2018.
[3] Yang et.al., IPOD: Intensive Point-based Object Detector for Point Cloud, 2018.
[4] Zhao et.al., 3D Object Detection Using Scale Invariant and Feature Re-weighting Networks, 2019.
[5] Chen et.al., Multi-View 3D Object Detection Network for Autonomous Driving, 2016.
[6] Ku et.al., Joint 3D Proposal Generation and Object Detection from View Aggregation, 2017.
[7] Liang et.al., Deep Continuous Fusion for Multi-Sensor 3D Object Detection, 2018.
[8] Vora et.al., PointPainting: Sequential Fusion for 3D Object Detection, 2019.
[9] Sindagi et.al., MVX-Net: Multimodal VoxelNet for 3D Object Detection, 2019.

上一篇:NVM - Nodejs的版本管理工具安装和使用


下一篇:【nodejs】vue前端+nodejs后端通讯最简单demo