Faster Rcnn 代码解读之 train_val.py

# --------------------------------------------------------
# Tensorflow Faster R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Xinlei Chen and Zheqi He
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from model.config import cfg
import roi_data_layer.roidb as rdl_roidb
from roi_data_layer.layer import RoIDataLayer
from utils.timer import Timer

try:
    import cPickle as pickle
except ImportError:
    import pickle
import numpy as np
import os
import sys
import glob
import time

import tensorflow as tf
from tensorflow.python import pywrap_tensorflow


# Slover的封装类,包含和训练有关的属性和方法
class SolverWrapper(object):
    """
      A wrapper class for the training process
    """

    def __init__(self, sess, network, imdb, roidb, valroidb, output_dir, tbdir, pretrained_model=None):
        self.net = network  # network类的实例
        self.imdb = imdb  # imdb类的实例
        self.roidb = roidb  # roidb字典
        self.valroidb = valroidb  # 验证roidb字典
        self.output_dir = output_dir  # 模型保存路径
        self.tbdir = tbdir  # tensorboard保存路径
        # Simply put '_val' at the end to save the summaries from the validation set
        self.tbvaldir = tbdir + '_val'  # 验证过程的tensorboard保存路径
        if not os.path.exists(self.tbvaldir):
            os.makedirs(self.tbvaldir)
        self.pretrained_model = pretrained_model  # 预训练权重的路径

    # 保存快照,包括模型权重的ckpt文件和训练参数的pkl文件
    def snapshot(self, sess, iter):

        net = self.net

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)

        # Store the model snapshot
        # 保存模型权重 例:shufflenetv2_faster_rcnn_iter_10000.cpkt等三个文件
        # SNAPSHOT_PREFIX在yml文件中配置 例:'shufflenetv2_faster_rcnn'
        filename = cfg.TRAIN.SNAPSHOT_PREFIX + '_iter_{:d}'.format(iter) + '.ckpt'
        filename = os.path.join(self.output_dir, filename)
        self.saver.save(sess, filename)
        print('Wrote snapshot to: {:s}'.format(filename))

        # Also store some meta information, random state, etc.
        # 保存随机数状态等训练过程参数
        nfilename = cfg.TRAIN.SNAPSHOT_PREFIX + '_iter_{:d}'.format(iter) + '.pkl'
        nfilename = os.path.join(self.output_dir, nfilename)
        # current state of numpy random
        # 保存随机数种子
        st0 = np.random.get_state()
        # current position in the database
        # 保存当前图片序号
        cur = self.data_layer._cur
        # current shuffled indexes of the database
        # 保存打乱后的图片序号列表
        perm = self.data_layer._perm
        # current position in the validation database
        # 验证过程,同上
        cur_val = self.data_layer_val._cur
        # current shuffled indexes of the validation database
        perm_val = self.data_layer_val._perm

        # Dump the meta info
        # 写入 例:shufflenetv2_faster_rcnn_iter_10000.pkl
        with open(nfilename, 'wb') as fid:
            pickle.dump(st0, fid, pickle.HIGHEST_PROTOCOL)
            pickle.dump(cur, fid, pickle.HIGHEST_PROTOCOL)
            pickle.dump(perm, fid, pickle.HIGHEST_PROTOCOL)
            pickle.dump(cur_val, fid, pickle.HIGHEST_PROTOCOL)
            pickle.dump(perm_val, fid, pickle.HIGHEST_PROTOCOL)
            pickle.dump(iter, fid, pickle.HIGHEST_PROTOCOL)

        return filename, nfilename

    # 载入快照
    def from_snapshot(self, sess, sfile, nfile):

        print('Restoring model snapshots from {:s}'.format(sfile))
        self.saver.restore(sess, sfile)
        print('Restored.')
        # Needs to restore the other hyper-parameters/states for training, (TODO xinlei) I have
        # tried my best to find the random states so that it can be recovered exactly
        # However the Tensorflow state is currently not available
        with open(nfile, 'rb') as fid:
            st0 = pickle.load(fid)
            cur = pickle.load(fid)
            perm = pickle.load(fid)
            cur_val = pickle.load(fid)
            perm_val = pickle.load(fid)
            last_snapshot_iter = pickle.load(fid)

            np.random.set_state(st0)
            self.data_layer._cur = cur
            self.data_layer._perm = perm
            self.data_layer_val._cur = cur_val
            self.data_layer_val._perm = perm_val

        return last_snapshot_iter

    # 返回checkpoint文件中得到的参数词典
    def get_variables_in_checkpoint_file(self, file_name):
        try:
            reader = pywrap_tensorflow.NewCheckpointReader(file_name)
            var_to_shape_map = reader.get_variable_to_shape_map()
            return var_to_shape_map
        except Exception as e:  # pylint: disable=broad-except
            print(str(e))
            if "corrupted compressed block contents" in str(e):
                print("It's likely that your checkpoint file has been compressed "
                      "with SNAPPY.")

    # 构建模型
    def construct_graph(self, sess):
        with sess.graph.as_default():
            # Set the random seed for tensorflow
            # 为了方便复现,随机数种子在cfg中设置,并在保存模型时保存在pkl文件中
            tf.set_random_seed(cfg.RNG_SEED)
            # Build the main computation graph
            # layers为模型输出,包含roi区域,loss值,预测结果,形式为字典
            layers = self.net.create_architecture('TRAIN', self.imdb.num_classes, tag='default',
                                                  anchor_scales=cfg.ANCHOR_SCALES,
                                                  anchor_ratios=cfg.ANCHOR_RATIOS)
            # Define the loss
            loss = layers['total_loss']
            # Set learning rate and momentum
            # 设置优化器,设定学习速率和动量
            lr = tf.Variable(cfg.TRAIN.LEARNING_RATE, trainable=False)
            self.optimizer = tf.train.MomentumOptimizer(lr, cfg.TRAIN.MOMENTUM)
            # 计算梯度,返回(gradient,variable)列表
            # Compute the gradients with regard to the loss
            gvs = self.optimizer.compute_gradients(loss)
            # Double the gradient of the bias if set
            # 在yml文件中重新设置为false,如果为true就将biases的梯度翻倍
            if cfg.TRAIN.DOUBLE_BIAS:
                final_gvs = []
                with tf.variable_scope('Gradient_Mult') as scope:
                    for grad, var in gvs:
                        scale = 1.
                        if cfg.TRAIN.DOUBLE_BIAS and '/biases:' in var.name:
                            scale *= 2.
                        if not np.allclose(scale, 1.0):
                            grad = tf.multiply(grad, scale)
                        final_gvs.append((grad, var))
                        # 更新梯度
                train_op = self.optimizer.apply_gradients(final_gvs)
            else:
                # 更新梯度
                train_op = self.optimizer.apply_gradients(gvs)
            # 创建Saver类,默认保存所有检查点
            # We will handle the snapshots ourselves
            self.saver = tf.train.Saver(max_to_keep=100000)
            # Write the train and validation information to tensorboard
            # 创建训练和验证过程tensorboard的filewrite类
            self.writer = tf.summary.FileWriter(self.tbdir, sess.graph)
            self.valwriter = tf.summary.FileWriter(self.tbvaldir)

        return lr, train_op

    def find_previous(self):
        # 设置匹配字符串
        sfiles = os.path.join(self.output_dir, cfg.TRAIN.SNAPSHOT_PREFIX + '_iter_*.ckpt.meta')
        # 返回当前目录下符合格式的文件列表
        sfiles = glob.glob(sfiles)
        # 按照文件最后修改时间排序
        sfiles.sort(key=os.path.getmtime)
        # Get the snapshot name in TensorFlow
        # 不是很懂这部分的目的
        '''lb:应该用于查看是否之前保存过模型,如果有的restore,没有就initialize'''
        redfiles = []
        for stepsize in cfg.TRAIN.STEPSIZE:
            redfiles.append(os.path.join(self.output_dir,
                                         cfg.TRAIN.SNAPSHOT_PREFIX + '_iter_{:d}.ckpt.meta'.format(stepsize + 1)))
        sfiles = [ss.replace('.meta', '') for ss in sfiles if ss not in redfiles]

        nfiles = os.path.join(self.output_dir, cfg.TRAIN.SNAPSHOT_PREFIX + '_iter_*.pkl')
        nfiles = glob.glob(nfiles)
        nfiles.sort(key=os.path.getmtime)
        redfiles = [redfile.replace('.ckpt.meta', '.pkl') for redfile in redfiles]
        nfiles = [nn for nn in nfiles if nn not in redfiles]

        lsf = len(sfiles)
        assert len(nfiles) == lsf

        return lsf, nfiles, sfiles

    # 模型初始化
    def initialize(self, sess):
        # Initial file lists are empty
        # 作用是初始化变量
        np_paths = []
        ss_paths = []
        # Fresh train directly from ImageNet weights
        print('Loading initial model weights from {:s}'.format(self.pretrained_model))
        # 获取全部变量
        variables = tf.global_variables()
        # Initialize all variables first
        # 初始化全部变量
        sess.run(tf.variables_initializer(variables, name='init'))
        # 从预训练的checkpoint中获得变量和对应值的字典
        var_keep_dic = self.get_variables_in_checkpoint_file(self.pretrained_model)
        # Get the variables to restore, ignoring the variables to fix
        # 在resnet等子类中实现,获得需要重载的参数字典
        variables_to_restore = self.net.get_variables_to_restore(variables, var_keep_dic)
        # 从预训练权重中重载variables_to_restore中的参数
        restorer = tf.train.Saver(variables_to_restore)
        restorer.restore(sess, self.pretrained_model)
        print('Loaded.')
        # Need to fix the variables before loading, so that the RGB weights are changed to BGR
        # For VGG16 it also changes the convolutional weights fc6 and fc7 to
        # fully connected weights
        # 部分参数需要转化后再重载,在每个子网络中实现
        self.net.fix_variables(sess, self.pretrained_model)
        print('Fixed.')
        last_snapshot_iter = 0
        rate = cfg.TRAIN.LEARNING_RATE
        stepsizes = list(cfg.TRAIN.STEPSIZE)

        return rate, last_snapshot_iter, stepsizes, np_paths, ss_paths

    # 获取最新的快照(用于重载)
    def restore(self, sess, sfile, nfile):
        # Get the most recent snapshot and restore
        np_paths = [nfile]
        ss_paths = [sfile]
        # Restore model from snapshots
        # 从pkl中回复变量
        last_snapshot_iter = self.from_snapshot(sess, sfile, nfile)  # 载入快照,获取iter
        # Set the learning rate
        # 初始学习速率
        rate = cfg.TRAIN.LEARNING_RATE
        stepsizes = []
        # 目前cfg.TRAIN.STEPSIZE仅有一项,为[30000],迭代超过30000次后,学习速率乘0.1
        # 在train_faster_rcnn.sh中根据数据集重新设置,voc_2007_trainval默认为[50000]
        for stepsize in cfg.TRAIN.STEPSIZE:
            if last_snapshot_iter > stepsize:
                rate *= cfg.TRAIN.GAMMA
            else:
                stepsizes.append(stepsize)

        return rate, last_snapshot_iter, stepsizes, np_paths, ss_paths

    # 删除多余的模型快照,默认保存3个
    def remove_snapshot(self, np_paths, ss_paths):
        to_remove = len(np_paths) - cfg.TRAIN.SNAPSHOT_KEPT
        for c in range(to_remove):
            nfile = np_paths[0]
            os.remove(str(nfile))
            np_paths.remove(nfile)

        to_remove = len(ss_paths) - cfg.TRAIN.SNAPSHOT_KEPT
        for c in range(to_remove):
            sfile = ss_paths[0]
            # To make the code compatible to earlier versions of Tensorflow,
            # where the naming tradition for checkpoints are different
            if os.path.exists(str(sfile)):
                os.remove(str(sfile))
            else:
                os.remove(str(sfile + '.data-00000-of-00001'))
                os.remove(str(sfile + '.index'))
            sfile_meta = sfile + '.meta'
            os.remove(str(sfile_meta))
            ss_paths.remove(sfile)

    # 训练模型
    def train_model(self, sess, max_iters):  # max_iters在train_faster_rcnn.sh指定

        # Build data layers for both training and validation set
        # 创建RoIDataLayer类
        self.data_layer = RoIDataLayer(self.roidb, self.imdb.num_classes)
        self.data_layer_val = RoIDataLayer(self.valroidb, self.imdb.num_classes, random=True)

        # Construct the computation graph
        # 构建计算图
        lr, train_op = self.construct_graph(sess)

        # Find previous snapshots if there is any to restore from
        # 返回快照文件 lsf为快照文件个数
        lsf, nfiles, sfiles = self.find_previous()

        # Initialize the variables or restore them from the last snapshot
        # 如果没有快照文件就从头初始化,有则直接重载
        if lsf == 0:
            rate, last_snapshot_iter, stepsizes, np_paths, ss_paths = self.initialize(sess)
        else:
            rate, last_snapshot_iter, stepsizes, np_paths, ss_paths = self.restore(sess,
                                                                                   str(sfiles[-1]),
                                                                                   str(nfiles[-1]))
        timer = Timer()
        iter = last_snapshot_iter + 1
        last_summary_time = time.time()
        # Make sure the lists are not empty
        # max_iter被添加到列表末尾,又反向排列成了第一个,然后pop从末尾开始提取元素
        # 在initialize中:stepsizes = list(cfg.TRAIN.STEPSIZE)
        # 在restore中:如果cfg.TRAIN.STEPSIZE中的值大于last_snapshot_iter的保存下来
        stepsizes.append(max_iters)
        stepsizes.reverse()
        next_stepsize = stepsizes.pop()
        while iter < max_iters + 1:
            # Learning rate
            # 每满足下一个stepsize,就保存一次快照,并将学习速率降低
            if iter == next_stepsize + 1:
                # Add snapshot here before reducing the learning rate
                self.snapshot(sess, iter)
                rate *= cfg.TRAIN.GAMMA
                sess.run(tf.assign(lr, rate))
                next_stepsize = stepsizes.pop()

            # 开始计时
            timer.tic()
            # Get training data, one batch at a time
            # 提取一个batch的blobs数据
            # blobs包含三组键值对{data、gt_boxes、im_info},具体内容在roi_data_layer/minibatch.py中
            blobs = self.data_layer.forward()

            now = time.time()
            # cfg.TRAIN.SUMMARY_INTERVAL=180 每3分钟保存一次摘要
            if iter == 1 or now - last_summary_time > cfg.TRAIN.SUMMARY_INTERVAL:
                # Compute the graph with summary
                rpn_loss_cls, rpn_loss_box, loss_cls, loss_box, total_loss, summary = \
                    self.net.train_step_with_summary(sess, blobs, train_op)
                # 保存摘要
                self.writer.add_summary(summary, float(iter))
                # Also check the summary on the validation set
                # 从验证集提取一个batch进行验证,并计算保存摘要
                blobs_val = self.data_layer_val.forward()
                summary_val = self.net.get_summary(sess, blobs_val)
                self.valwriter.add_summary(summary_val, float(iter))
                last_summary_time = now
            else:
                # Compute the graph without summary
                # 只训练,不计算保存摘要
                rpn_loss_cls, rpn_loss_box, loss_cls, loss_box, total_loss = \
                    self.net.train_step(sess, blobs, train_op)
            # 结束计时
            timer.toc()

            # Display training information
            if iter % (cfg.TRAIN.DISPLAY) == 0:
                print('iter: %d / %d, total loss: %.6f\n >>> rpn_loss_cls: %.6f\n '
                      '>>> rpn_loss_box: %.6f\n >>> loss_cls: %.6f\n >>> loss_box: %.6f\n >>> lr: %f' % \
                      (iter, max_iters, total_loss, rpn_loss_cls, rpn_loss_box, loss_cls, loss_box, lr.eval()))
                print('speed: {:.3f}s / iter'.format(timer.average_time))

            # Snapshotting
            # 每间隔SNAPSHOT_ITERS次保存一次快照
            if iter % cfg.TRAIN.SNAPSHOT_ITERS == 0:
                last_snapshot_iter = iter
                ss_path, np_path = self.snapshot(sess, iter)
                np_paths.append(np_path)
                ss_paths.append(ss_path)

                # Remove the old snapshots if there are too many
                # 删除多余快照
                if len(np_paths) > cfg.TRAIN.SNAPSHOT_KEPT:
                    self.remove_snapshot(np_paths, ss_paths)

            iter += 1
        # 保存训练结束时的快照
        if last_snapshot_iter != iter - 1:
            self.snapshot(sess, iter - 1)

        self.writer.close()
        self.valwriter.close()


def get_training_roidb(imdb):
    """Returns a roidb (Region of Interest database) for use in training."""
    if cfg.TRAIN.USE_FLIPPED:
        print('Appending horizontally-flipped training examples...')
        # 数据增强,将图像水平翻转后添加到数据集末尾
        imdb.append_flipped_images()
        print('done')

    print('Preparing training data...')
    # 为roidata添加一些说明性的附加属性
    rdl_roidb.prepare_roidb(imdb)
    print('done')
    '''
    roidb是由字典组成的list,roidb[img_index]包含了该图片索引所包含到roi信息,下面以roidb[img_index]为例说明:
    boxes:box位置信息,box_num*4的np array
    gt_overlaps:所有box在不同类别的得分,box_num*class_num矩阵
    gt_classes:所有box的真实类别,box_num长度的list
    filpped:是否翻转
    max_overlaps:每个box的在所有类别的得分最大值,box_num长度
    max_classes:每个box的得分最高所对应的类,box_num长度
    image:图片的路径
    width:图片的宽
    height:图片的高
    '''
    return imdb.roidb


# 删除无用的rois
def filter_roidb(roidb):
    """Remove roidb entries that have no usable RoIs."""

    # 筛选有效图片
    def is_valid(entry):
        # Valid images have:
        #   (1) At least one foreground RoI OR
        #   (2) At least one background RoI
        overlaps = entry['max_overlaps']
        # find boxes with sufficient overlap
        # 获得前背景的下标
        fg_inds = np.where(overlaps >= cfg.TRAIN.FG_THRESH)[0]
        # Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI)
        bg_inds = np.where((overlaps < cfg.TRAIN.BG_THRESH_HI) &
                           (overlaps >= cfg.TRAIN.BG_THRESH_LO))[0]
        # image is only valid if such boxes exist
        # 一张有效的图片至少有一个前景或背景
        valid = len(fg_inds) > 0 or len(bg_inds) > 0
        return valid

    # 返回筛选后的roidb ,并打印筛掉的图片的数量
    num = len(roidb)
    filtered_roidb = [entry for entry in roidb if is_valid(entry)]
    num_after = len(filtered_roidb)
    print('Filtered {} roidb entries: {} -> {}'.format(num - num_after,
                                                       num, num_after))
    return filtered_roidb


def train_net(network, imdb, roidb, valroidb, output_dir, tb_dir,
              pretrained_model=None,
              max_iters=40000):
    """Train a Faster R-CNN network."""
    # 删除无效图片,保证每张图都至少有一个前景和一个背景
    roidb = filter_roidb(roidb)
    valroidb = filter_roidb(valroidb)
    # session运行参数,自动分配GPU,根据需要动态申请显存
    tfconfig = tf.ConfigProto(allow_soft_placement=True)
    tfconfig.gpu_options.allow_growth = True

    with tf.Session(config=tfconfig) as sess:
        # 创建SolverWrapper类实例
        sw = SolverWrapper(sess, network, imdb, roidb, valroidb, output_dir, tb_dir,
                           pretrained_model=pretrained_model)
        print('Solving...')
        # 调用train_model方法进行训练
        sw.train_model(sess, max_iters)
        print('done solving')

感谢WYX同志

上一篇:03_矩阵基础


下一篇:html基础学习1