『CUDA C编程权威指南』第二章编程题选做

第一题

设置线程块中线程数为1024效果优于设置为1023,且提升明显,不过原因未知,以后章节看看能不能回答。

第二题

参考文件sumArraysOnGPUtimer.cu,设置block=256,新建内核,使每个线程处理两个元素。

思路很简单,将数据的虚拟内存对半分为高低两块,每一内核线程同时处理两个索引区域序列相同的数据即可:

# include <cuda_runtime.h>
# include <stdio.h>
# include <sys/time.h>
# include "common.h" __global__ void sumArraysOnGPU(float *A, float *B, float *C, const int N)
{
int i = blockIdx.x * blockDim.x + threadIdx.x; if (i < N/2) {
C[i] = A[i] + B[i];
C[i+N/2] = A[i+N/2] + B[i+N/2];
}
} int main(int argc, char **argv)
{
printf("%s Starting...\n", argv[0]); // set up device
int dev = 0;
cudaDeviceProp deviceProp;
CHECK(cudaGetDeviceProperties(&deviceProp, dev));
printf("Using Device %d: %s\n", dev, deviceProp.name);
CHECK(cudaSetDevice(dev)); // set up data size of vectors
int nElem = 1 << 24;
printf("Vector size %d\n", nElem); // malloc host memory
size_t nBytes = nElem * sizeof(float); float *h_A, *h_B, *hostRef, *gpuRef;
h_A = (float *)malloc(nBytes);
h_B = (float *)malloc(nBytes);
hostRef = (float *)malloc(nBytes);
gpuRef = (float *)malloc(nBytes); double iStart, iElaps; // initialize data at host side
iStart = cpuSecond();
initialData(h_A, nElem);
initialData(h_B, nElem);
iElaps = cpuSecond() - iStart;
printf("initialData Time elapsed %f sec\n", iElaps);
memset(hostRef, 0, nBytes);
memset(gpuRef, 0, nBytes); // add vector at host side for result checks
iStart = cpuSecond();
sumArraysOnHost(h_A, h_B, hostRef, nElem);
iElaps = cpuSecond() - iStart;
printf("sumArraysOnHost Time elapsed %f sec\n", iElaps); // malloc device global memory
float *d_A, *d_B, *d_C;
CHECK(cudaMalloc((float**)&d_A, nBytes));
CHECK(cudaMalloc((float**)&d_B, nBytes));
CHECK(cudaMalloc((float**)&d_C, nBytes)); // transfer data from host to device
CHECK(cudaMemcpy(d_A, h_A, nBytes, cudaMemcpyHostToDevice));
CHECK(cudaMemcpy(d_B, h_B, nBytes, cudaMemcpyHostToDevice));
CHECK(cudaMemcpy(d_C, gpuRef, nBytes, cudaMemcpyHostToDevice)); // invoke kernel at host side
int iLen = 512;
dim3 block (iLen);
dim3 grid ((nElem + block.x - 1) / block.x / 2);
// <<< 16384, 512 >>> Time elapsed 0.000747 sec
// <<< 32768, 512 >>> Time elapsed 0.000709 sec iStart = cpuSecond();
sumArraysOnGPU<<<grid, block>>>(d_A, d_B, d_C, nElem);
CHECK(cudaDeviceSynchronize());
iElaps = cpuSecond() - iStart;
printf("sumArraysOnGPU <<< %d, %d >>> Time elapsed %f sec\n", grid.x,
block.x, iElaps); // check kernel error
// CHECK(cudaGetLastError()) ; // copy kernel result back to host side
CHECK(cudaMemcpy(gpuRef, d_C, nBytes, cudaMemcpyDeviceToHost)); // check device results
checkResult(hostRef, gpuRef, nElem); // free device global memory
CHECK(cudaFree(d_A));
CHECK(cudaFree(d_B));
CHECK(cudaFree(d_C)); // free host memory
free(h_A);
free(h_B);
free(hostRef);
free(gpuRef); return(0);
}

『CUDA C编程权威指南』第二章编程题选做

第四题

参考文件sumMatrixOnGPU-2D-gril-1D-block.cu,新建内核,使每个线程处理两个元素。

思路同上,由于是二维索引,所以采取的划分是按照纵坐标y将数据对半划分,可以直观理解为沿着y/2将数据对折,然后同一个线程处理数据为两个块中对应位置即可:

# include <cuda_runtime.h>
# include <stdio.h>
# include <sys/time.h>
# include "common.h" // grid 2D block 1D
__global__ void sumMatrixsOnGPUMix(float *MatA, float *MatB, float *MatC,
int nx, int ny)
{
int ix = threadIdx.x + blockIdx.x * blockDim.x;
int iy = blockIdx.y;
int idx = iy * nx + ix; if (ix < nx && iy < ny/2) {
MatC[idx] = MatA[idx] + MatB[idx];
MatC[idx + nx*ny/2] = MatA[idx + nx*ny/2] + MatB[idx + nx*ny/2];
}
} int main(int argc, char **argv){
printf("%s Startin... \n", argv[0]); //set up device
int dev = 0;
cudaDeviceProp deviceProp;
CHECK(cudaGetDeviceProperties(&deviceProp, dev));
printf("Using Device %d: %s\n", dev, deviceProp.name);
CHECK(cudaSetDevice(dev)); // matrix size
int nx = 1<<13;
int ny = 1<<5; // 2**18 int nxy = nx * ny;
int nBytes = nxy * sizeof(float);
printf("Matrix size:nx %d, ny %d\n", nx, ny); float *h_A, *h_B, *hostRef, *gpuRef;
h_A = (float *)malloc(nBytes);
h_B = (float *)malloc(nBytes);
hostRef = (float *)malloc(nBytes);
gpuRef = (float *)malloc(nBytes); // initialize data at host side
double iStart, iElaps;
iStart = cpuSecond();
initialData(h_A, nxy);
initialData(h_B, nxy);
iElaps = cpuSecond() - iStart; memset(hostRef, 0, nBytes);
memset(gpuRef, 0, nBytes); iStart = cpuSecond();
sumMatrixsOnHost(h_A, h_B, hostRef, nx, ny);
iElaps = cpuSecond() - iStart; // malloc device global memory
float *d_MatA, *d_MatB, *d_MatC;
cudaMalloc((float **)&d_MatA, nBytes);
cudaMalloc((float **)&d_MatB, nBytes);
cudaMalloc((float **)&d_MatC, nBytes); // transfer data from host to device
cudaMemcpy(d_MatA, h_A, nBytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_MatB, h_B, nBytes, cudaMemcpyHostToDevice); // invoke kernel at host to device
dim3 block (256); // 2维块设置
dim3 grid ((nx+block.x-1)/block.x, ny/2); // 2维网格设置
/*
<<<(1024, 16384), (16, 1)>>> Time elapsed 0.021947sec
<<<(512, 16384), (32, 1)>>> Time elapsed 0.011039sec
<<<(64, 16384), (256, 1)>>> Time elapsed 0.009063sec
*/ iStart = cpuSecond();
sumMatrixsOnGPUMix<<<grid, block>>>(d_MatA, d_MatB, d_MatC, nx, ny);
cudaDeviceSynchronize(); // 测试用,同步线程,实际无需等待子线程
iElaps = cpuSecond() - iStart;
printf("sumArraysOnGPU <<<(%d, %d), (%d, %d)>>> Time elapsed %f" \
"sec\n", grid.x, grid.y, block.x, block.y, iElaps); cudaMemcpy(gpuRef, d_MatC, nBytes, cudaMemcpyDeviceToHost);
checkResult(hostRef, gpuRef, nxy); // free device global memory
cudaFree(d_MatA);
cudaFree(d_MatB);
cudaFree(d_MatC); // free host memory
free(h_A);
free(h_B);
free(hostRef);
free(gpuRef); // reset device
cudaDeviceReset(); return 0;
}

运行结果如下:

『CUDA C编程权威指南』第二章编程题选做

附common.h文件

# include <cuda_runtime.h>
# include <stdio.h>
# include <sys/time.h>
# define CHECK(call) \
{ \
const cudaError_t error = call; \
if (error != cudaSuccess) \
{ \
fprintf(stderr, "Error: %s:%d, ", __FILE__, __LINE__); \
fprintf(stderr, "code: %d, reason: %s\n", error, \
cudaGetErrorString(error)); \
exit(1); \
} \
} void initialData(float *ip, int size)
{
time_t t;
srand((unsigned int) time(&t)); for (int i=0; i<size; i++)
{
ip[i] = (float)(rand() & 0xFF)/10.0f;
}
} double cpuSecond() {
struct timeval tp;
gettimeofday(&tp, NULL);
return ((double)tp.tv_sec + (double)tp.tv_usec*1.e-6);
} void checkResult(float *hostRef, float *gpuRef, const int N) {
double epsilon = 1.0E-8;
bool match = 1;
for (int i=0; i<N; i++) {
if (abs(hostRef[i] - gpuRef[i]) > epsilon) {
match = 0;
printf("Arrays do not match!\n");
printf("host %5.2f gpu %5.2f at current %d\n",
hostRef[i], gpuRef[i], i);
break;
}
}
if (match) printf("Arrays match.\n\n");
} void sumArraysOnHost(float *A, float *B, float *C, const int N) {
for (int idx=0; idx<N; idx++)
C[idx] = A[idx] + B[idx];
} void sumMatrixsOnHost(float *A, float *B, float *C, const int nx, const int ny){
float *ia = A;
float *ib = B;
float *ic = C;
for (int iy=0; iy<ny; iy++){
for (int ix=0; ix<nx; ix++){
ic[ix] = ia[ix] + ib[ix];
}
ia += nx;
ib += nx;
ic += nx;
}
}
上一篇:OpenCL、OpenGL、OpenAL


下一篇:用Python分析WordPress官网所有插件的开发者信息