UNION介绍
DataStream.union()方法将两条或者多条DataStream合并成一条具有与输入流相同类型的输出DataStream.
事件合流的方式为FIFO方式。操作符并不会产生一个特定顺序的事件流。union操作符也不会进行去重。每一个输入事件都被发送到了下一个操作符。
说明:
1.union 合并的流的元素必须是相同的
2.union 可以合并多条流
3.union不去重,合流顺序为先进先出
具体用法:
DataStream<SensorReading> parisStream = ...
DataStream<SensorReading> tokyoStream = ...
DataStream<SensorReading> rioStream = ...
DataStream<SensorReading> allCities = parisStream
.union(tokyoStream, rioStream)
CONNECT
CONNECT也是用来合并多个数据流的,它和UNION的功能类似,区别在于:
connect只能连接两个数据流,union可以连接多个数据流。
connect所连接的两个数据流的数据类型可以不一致,union所连接的两个数据流的数据类型必须一致。
两个DataStream经过connect之后被转化为ConnectedStreams,ConnectedStreams会对两个流的数据应用不同的处理方法,且双流之间可以共享状态。
connect经常被应用在对一个数据流使用另外一个流进行控制处理的场景上。
具体用法:
合并流:
// first stream
DataStream<Integer> first = ...
// second stream
DataStream<String> second = ...
// connect streams
ConnectedStreams<Integer, String> connected = first.connect(second);
两种keyby后合并
DataStream<Tuple2<Integer, Long>> one = ...
DataStream<Tuple2<Integer, String>> two = ...
// keyBy two connected streams
ConnectedStreams<Tuple2<Int, Long>, Tuple2<Integer, String>> keyedConnect1 = one
.connect(two)
.keyBy(0, 0); // key both input streams on first attribute
// alternative: connect two keyed streams
ConnectedStreams<Tuple2<Integer, Long>, Tuple2<Integer, String>> keyedConnect2 = one
.keyBy(0)
.connect(two.keyBy(0));
CoGroup:
该操作是将两个数据流/集合按照key进行group,然后将相同key的数据进行处理,但是它和join操作稍有区别,它在一个流/数据集中没有找到与另一个匹配的数据还是会输出。
import org.apache.flink.api.common.functions.CoGroupFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.RichSourceFunction;
import org.apache.flink.streaming.api.windowing.assigners.ProcessingTimeSessionWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.triggers.CountTrigger;
import org.apache.flink.util.Collector;
import java.util.Random;
import java.util.concurrent.TimeUnit;
public class CoGroupMain {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
final Random random = new Random();
DataStreamSource<Tuple2<String, String>> source1 = env.addSource(new RichSourceFunction<Tuple2<String, String>>() {
boolean isRunning = true;
String[] s1 = {"1,a", "2,b", "3,c", "4,d", "5,e"};
public void run(SourceContext<Tuple2<String, String>> ctx) throws Exception {
int size = s1.length;
while (isRunning) {
TimeUnit.SECONDS.sleep(1);
String[] s = s1[random.nextInt(size)].split(",");
Tuple2 t = new Tuple2();
t.f0 = s[0];
t.f1 = s[1];
ctx.collect(t);
}
}
public void cancel() {
isRunning = false;
}
});
DataStreamSource<Tuple2<String, String>> source2 = env.addSource(new RichSourceFunction<Tuple2<String, String>>() {
boolean isRunning = true;
String[] s1 = {"1,a", "2,b", "3,c", "4,d", "5,e", "6,f", "7,g", "8,h"};
public void run(SourceContext<Tuple2<String, String>> ctx) throws Exception {
int size = s1.length;
while (isRunning) {
TimeUnit.SECONDS.sleep(3);
String[] s = s1[random.nextInt(size)].split(",");
Tuple2 t = new Tuple2();
t.f0 = s[0];
t.f1 = s[1];
ctx.collect(t);
}
}
public void cancel() {
isRunning = false;
}
});
source1.coGroup(source2)
.where(new KeySelector<Tuple2<String, String>, Object>() {
public Object getKey(Tuple2<String, String> value) throws Exception {
return value.f0;
}
}).equalTo(new KeySelector<Tuple2<String, String>, Object>() {
public Object getKey(Tuple2<String, String> value) throws Exception {
return value.f0;
}
}).window(ProcessingTimeSessionWindows.withGap(Time.seconds(3)))
.trigger(CountTrigger.of(1))
.apply(new CoGroupFunction<Tuple2<String, String>, Tuple2<String, String>, Object>() {
public void coGroup(Iterable<Tuple2<String, String>> first, Iterable<Tuple2<String, String>> second, Collector<Object> out) throws Exception {
StringBuffer stringBuffer = new StringBuffer();
stringBuffer.append("DataStream first:\n");
for (Tuple2<String, String> value : first) {
stringBuffer.append(value.f0 + "=>" + value.f1 + "\n");
}
stringBuffer.append("DataStream second:\n");
for (Tuple2<String, String> value : second) {
stringBuffer.append(value.f0 + "=>" + value.f1 + "\n");
}
out.collect(stringBuffer.toString());
}
}).print();
env.execute();
}
}
Join
flink中常见的join有四个:
- Tumbling Window Join
- Sliding Window Join
- Session Window Join
- Interval Join
Join的编程模型为:
stream.join(otherStream)
.where(<KeySelector>)
.equalTo(<KeySelector>)
.window(<WindowAssigner>)
.apply(<JoinFunction>)
Tumbling Window Join的实例:
import org.apache.flink.api.common.functions.JoinFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.triggers.CountTrigger;
public class TumblingMain {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//设置时间语义
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
DataStream<Tuple2<String, String>> source1 = env.socketTextStream("192.168.6.23", 9022)
.map(new MapFunction<String, Tuple2<String, String>>() {
public Tuple2<String, String> map(String value) throws Exception {
return Tuple2.of(value.split(" ")[0], value.split(" ")[1]);
}
});
DataStream<Tuple2<String, String>> source2 = env.socketTextStream("192.168.6.23", 9023)
.map(new MapFunction<String, Tuple2<String, String>>() {
public Tuple2<String, String> map(String value) throws Exception {
return Tuple2.of(value.split(" ")[0], value.split(" ")[1]);
}
});
source1.join(source2)
.where(new KeySelector<Tuple2<String, String>, Object>() {
public Object getKey(Tuple2<String, String> value) throws Exception {
return value.f0;
}
})
.equalTo(new KeySelector<Tuple2<String, String>, Object>() {
public Object getKey(Tuple2<String, String> value) throws Exception {
return value.f0;
}
})
.window(TumblingProcessingTimeWindows.of(Time.seconds(5)))
.trigger(CountTrigger.of(1))
.apply(new JoinFunction<Tuple2<String, String>, Tuple2<String, String>, Object>() {
public Object join(Tuple2<String, String> first, Tuple2<String, String> second) throws Exception {
if (first.f0.equals(second.f0)) {
return first.f1 + " " + second.f1;
}
return null;
}
}).print();
env.execute();
}
}
Interval Join
Interval Join会将两个数据流按照相同的key,并且在其中一个流的时间范围内的数据进行join处理。通常用于把一定时间范围内相关的分组数据拉成一个宽表。我们通常可以用类似下面的表达式来使用interval Join来处理两个数据流
Interval Join变成模型:
orangeStream
.keyBy(<KeySelector>)
.intervalJoin(greenStream.keyBy(<KeySelector>))
.between(Time.milliseconds(-2), Time.milliseconds(1))
.process (new ProcessJoinFunction<Integer, Integer, String(){
@Override
public void processElement(Integer left, Integer right, Context ctx, Collector<String> out) {
out.collect(first + "," + second);
}
});