【图像去噪】基于matlab全变分算法图像去噪【含Matlab源码 1324期】

一、全变分算法简介

全变分(Total variation),也称为全变差,是图象复原中常用的一个名词。本文简要介绍全变分的概念以及在图象去噪中的应用。

1 一维信号的全变分和去噪
1.1 一维连续函数的全变分
一维连续实函数f(x)f(x)在区间[a,b]⊂R[a,b]⊂R上的全变分定义为参数曲线x→f(x),x∈[a,b]x→f(x),x∈[a,b]的弧长。其表达式为
Vba(f)=∫ba|f′(x)|dx
Vab(f)=∫ab|f′(x)|dx
说白了,所谓的“变分”就是|f(x+Δx)−f(x)||f(x+Δx)−f(x)|,对于连续函数Δx→0Δx→0。而全变分是对函数定义的区间而言的,就是将“变分”在区间上累加起来。
一维离散信号的全变分
从上面连续实函数的全变分,我们可以很容易想到它的离散形式。给出信号序列{yi},i=1,..,n{yi},i=1,..,n,它的全变分定义为
V(y)=∑i=1n|yi+1−yi|
V(y)=∑i=1n|yi+1−yi|
用一句话来概括,全变分是前后项之差的绝对值之和。

1.2 一维信号去噪
当我们得到观察信号xixi,希望xixi变得平滑,也就是对xixi去噪。一种很直观的想法就是让信号的全变分变小。全变分对应的物理意义就是输入信号的平滑度。设得到的恢复信号为yiyi,它应该满足两个条件:
yiyi与观察信号xixi的差距不大。这个差距的常用数学表达式就是
E(x,y)=12∑i(xi−yi)2
E(x,y)=12∑i(xi−yi)2
yiyi的全变分不大。
将物理约束转化为数学模型,求解yy等价于求解下面这个优化问题:
minyE(x,y)+λV(y)
minyE(x,y)+λV(y)
其中参数λλ是正常数,用于调节两个约束的作用大小。注意到E(x,y)E(x,y)和V(y)V(y)都是凸函数,这是一个无约束凸优化问题,有很多经典方法可以求解。

2 二维离散信号(图象)的全变分和去噪
图象是典型的二维离散信号,Rudin在1992年将其全变分定义为
V(y)=∑i,j|yi+1,j−yi,j|2+|yi,j+1−yi,j|2−−−−−−−−−−−−−−−−−−−−−−−√
V(y)=∑i,j|yi+1,j−yi,j|2+|yi,j+1−yi,j|2
这个函数是各项同性的,但是不可微,也并不是凸函数。非凸函数的优化求解难度、速度和稳定性都无法与凸函数相比。因此二维全变分有另一种常用定义
V(y)=∑i,j|yi+1,j−yi,j|2−−−−−−−−−−−√+|yi,j+1−yi,j|2−−−−−−−−−−−√=∑i,j|yi+1,j−yi,j|+|yi,j+1−yi,j|
V(y)=∑i,j|yi+1,j−yi,j|2+|yi,j+1−yi,j|2=∑i,j|yi+1,j−yi,j|+|yi,j+1−yi,j|
这个函数是凸函数了。
仿照一维信号的去噪,基于全变分的图象去噪可以看成求解优化问题
minyE(x,y)+λV(y)
minyE(x,y)+λV(y)
其中E(x,y)E(x,y)作为数据误差项定义为

E(x,y)=12∑i,j(xi,j−yi,j)2
E(x,y)=12∑i,j(xi,j−yi,j)2
当VV有凸函数形式时,问题变为无约束凸优化问题,从而容易求解。

二、部分源代码

%% This file demonstrates the Split Bregman method for Total Variation denoising
%
%   SB_ATV.m  Split Bregman Anisotropic Total Variation Denoising
%   SB_ITV.m  Split Bregman Isotropic Total Variation Denoising


clc; clear all;
close all;

N = 512; n = N^2;
f = double(imread('Lena512','png'));
g = f(:) + 0.09*max(f(:))*randn(n,1);

mu = 20;

g_denoise_atv = SB_ATV(g,mu);
g_denoise_itv = SB_ITV(g,mu);

fprintf('ATV Rel.Err = %g\n',norm(g_denoise_atv(:) - f(:)) / norm(f(:)));
fprintf('ITV Rel.Err = %g\n',norm(g_denoise_itv(:) - f(:)) / norm(f(:)));

figure; colormap gray;
subplot(221); imagesc(f); axis image; title('Original');
subplot(222); imagesc(reshape(g,N,N)); axis image; title('Noisy');
subplot(223); imagesc(reshape(g_denoise_atv,N,N)); axis image; 
title('Anisotropic TV denoising');
subplot(224); imagesc(reshape(g_denoise_itv,N,N)); axis image; 
title('Isotropic TV denoising');
function u = SB_ATV(g,mu)
% Split Bregman Anisotropic Total Variation Denoising
%
%   u = arg min_u 1/2||u-g||_2^2 + mu*ATV(u)
%   
%   g : noisy image
%   mu: regularisation parameter
%   u : denoised image
%
% Refs:
%  *Goldstein and Osher, The split Bregman method for L1 regularized problems
%   SIAM Journal on Imaging Sciences 2(2) 2009
%  *Micchelli et al, Proximity algorithms for image models: denoising
%   Inverse Problems 27(4) 2011
%
% Benjamin Trémoulhéac
% University College London
% b.tremoulheac@cs.ucl.ac.uk
% April 2012
g = g(:);
n = length(g);
[B Bt BtB] = DiffOper(sqrt(n));
 
d = b;
u = g;
err = 1;k = 1;
tol = 1e-3;
lambda = 1;
while err > tol
    fprintf('it. %g ',k);
   
    [u,~] = cgs(speye(n)+BtB, g-lambda*Bt*(b-d),1e-5,100); 
    Bub = B*u+b;
    d = max(abs(Bub)-mu/lambda,0).*sign(Bub);
    b = Bub-d;
    err = norm(up-u)/norm(u);
  
    k = k+1;
end
fprintf('Stopped because norm(up-u)/norm(u) <= tol=%.1e\n',tol);
end

function [B Bt BtB] = DiffOper(N)
D = spdiags([-ones(N,1) ones(N,1)], [0 1], N,N+1);
D(:,1) = [];
D(1,1) = 0;
B = [ kron(speye(N),D) ; kron(D,speye(N)) ];
Bt = B';
BtB = Bt*B;
end

三、运行结果

【图像去噪】基于matlab全变分算法图像去噪【含Matlab源码 1324期】
【图像去噪】基于matlab全变分算法图像去噪【含Matlab源码 1324期】

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.

上一篇:中心极限定理


下一篇:正态分布的条件分布与边缘分布