「SDOI2016」储能表(数位dp)
神仙数位 \(dp\) 系列 可能我做题做得少 \(QAQ\)
\(f[i][0/1][0/1][0/1]\) 表示第 \(i\) 位 \(n\) 是否到达上界 \(m\) 是否到达上界 \(k\) 是否到达下界。我用一个 \(pair\) 存,\(first\) 记录方案数,\(second\) 记录所有的和。
\(ans=(P.S-k*P.F)\%mod\)
那么我们每次枚举该位为 \(0/1\) 就可以转移了,逐位计算贡献。
\(Code\ Below:\)
#include <bits/stdc++.h>
#define ll long long
#define pll pair<ll,ll>
#define mp make_pair
#define F first
#define S second
using namespace std;
ll n,m,k,mod;pll f[70][2][2][2];
bool vis[70][2][2][2];
pll dfs(int len,bool N,bool M,bool K){
if(len<0) return mp(1,0);
if(vis[len][N][M][K]) return f[len][N][M][K];
vis[len][N][M][K]=1;
pll ret=mp(0,0),P;
bool lim_n=N?(n>>len)&1:1,lim_m=M?(m>>len)&1:1,lim_k=K?(k>>len)&1:1;
for(int i=0;i<=lim_n;i++)
for(int j=0;j<=lim_m;j++){
if(K&&(i^j)<lim_k) continue;
P=dfs(len-1,N&&i==lim_n,M&&j==lim_m,K&&(i^j)==lim_k);
ret.F=(ret.F+P.F)%mod;
ret.S=(ret.S+P.S+(i^j)*(1ll<<len)%mod*P.F)%mod;
}
return f[len][N][M][K]=ret;
}
inline void solve(){
memset(f,0,sizeof(f));
memset(vis,0,sizeof(vis));
scanf("%lld%lld%lld%lld",&n,&m,&k,&mod);
n--;m--;
ll N=n,M=m,K=k;int Max=0,now=0;
while(N) N>>=1,now++;Max=max(Max,now);now=0;
while(M) M>>=1,now++;Max=max(Max,now);now=0;
while(K) K>>=1,now++;Max=max(Max,now);now=0;
pll P=dfs(Max-1,1,1,1);
printf("%lld\n",(P.S-k%mod*P.F%mod+mod)%mod);
}
int main()
{
int T;
scanf("%d",&T);
while(T--) solve();
return 0;
}