A. The beautiful values of the palace
求出每个点的权值, 然后树状数组扫描线
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <cmath> #include <set> #include <map> #include <queue> #include <string> #include <cstring> #include <bitset> #include <functional> #include <random> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head const int N = 1e6+50; int n,m,p,cnt; ll f[N][5],b[N]; pii pos[N][5]; int type(int x, int y) { int a=min(abs(x-1),abs(x-n)); int b=min(abs(y-1),abs(y-n)); return min(a,b)+1; } ll get(int x, int y) { int d = type(x,y); if (d==n/2+1) return (ll)n*n; if (x==pos[d][1].x) { return f[d][1]+pos[d][1].y-y; } if (y==pos[d][2].y) { return f[d][2]-x+pos[d][2].x; } if (x==pos[d][3].x) { return f[d][3]+y-pos[d][3].y; } return f[d][4]+x-pos[d][4].x; } int solve(int x, int y) { ll t = get(x,y); int ret = 0; while (t) ret+=t%10,t/=10; return ret; } struct _ { int h,w,type; void pr() { printf("h=%d,w=%d,type=%d\n",h,w,type); } }; vector<_> e[N],ee[N]; void add(int x, int y, int v, int id) { e[x].pb({y,id,v}); } ll ans[N]; ll cc[N]; ll query(int x) { ll ret = 0; for (; x; x^=x&-x) ret += cc[x]; return ret; } void add(int x, int v) { for (; x<=n; x+=x&-x) cc[x]+=v; } void work() { cnt = 0; f[1][1] = 1; f[1][2] = n; f[1][3] = 2*n-1; f[1][4] = 3*n-2; pos[1][1] = pii(n,n); pos[1][2] = pii(n,1); pos[1][3] = pii(1,1); pos[1][4] = pii(1,n); int now = n-1; REP(d,2,n/2) { REP(j,1,4) pos[d][j]=pos[d-1][j]; --pos[d][1].x,--pos[d][1].y; --pos[d][2].x,++pos[d][2].y; ++pos[d][3].x,++pos[d][3].y; ++pos[d][4].x,--pos[d][4].y; f[d][1] = f[d-1][4]+now; now -= 2; f[d][2] = f[d][1]+now; f[d][3] = f[d][2]+now; f[d][4] = f[d][3]+now; } REP(i,0,n+1) e[i].clear(),cc[i]=0,ee[i].clear(); REP(i,1,m) { int x, y; scanf("%d%d", &x, &y); ee[x].pb({y,solve(x,y),-2}); } REP(i,1,p) { int x1,y1,x2,y2; scanf("%d%d%d%d",&x1,&y1,&x2,&y2); --x1,--y1; add(x2,y2,1,i); add(x2,y1,-1,i); add(x1,y2,-1,i); add(x1,y1,1,i); ans[i] =0; } REP(i,1,n) { for(auto t:ee[i]) add(t.h,t.w); for(auto t:e[i]) { ans[t.w] += t.type*query(t.h); } } REP(i,1,p) printf("%lld\n",ans[i]); } int main() { int t; scanf("%d", &t); while (t--) scanf("%d%d%d",&n,&m,&p),work(); }
B. super_log
答案是a^a^a^...^a, 一共$b$个$a$, 可以用拓展欧拉定理
#include <iostream> #include <algorithm> #include <math.h> #include <cstdio> #include <set> #include <map> #include <string> #include <vector> #include <string.h> #include <queue> #define PER(i,a,n) for(int i=n;i>=a;--i) #define REP(i,a,n) for(int i=a;i<=n;++i) #define hr cout<<'\n' #define pb push_back #define mid ((l+r)>>1) #define lc (o<<1) #define rc (lc|1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false); #define endl '\n' using namespace std; #define mod(a,b) a<b?a:a%b+b typedef long long ll; typedef pair<int,int> pii; int P = 1e9+7; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n,ll P) { ll r=1; for (;n;a=mod(a*a,P),n>>=1) if(n&1)r=mod(r*a,P); return r; } const int N = 1e6+10; int f[N], n, m; map<int,int> dp; int phi(int x) { if (dp.count(x)) return dp[x]; int mx = sqrt(x+0.5), r = x, t = x; REP(i,2,mx) if (x%i==0) { r = r/i*(i-1); while (x%i==0) x/=i; } if (x>1) r=r/x*(x-1); return dp[t]=r; } int query(int a, int n, int m) { if (n==1||m==1) return mod(a,m); return qpow(a,query(a,n-1,phi(m)),m); } void work() { int a,b,m; scanf("%d%d%d", &a, &b, &m); if (b==0) return printf("%d\n",1%m),void(); dp.clear(); printf("%d\n",query(a,b,m)%m); } int main() { int t; scanf("%d", &t); while (t--) work(); }
C. Tsy's number 5
设$f_i=\sum\limits_{k=1}^n[\varphi(k)=i]$, 然后原式就等于$\sum\limits_{i=1}^n\sum\limits_{j=1}^n f_if_jij2^{ij}$
可以化为求$\sum\limits_{j=1}^n jf_j 2^{ij}={\sqrt{2}}^{i^2}\sum\limits_{j=1}^njf_j {\sqrt{2}}^{j^2-(i-j)^2}$
设$a_i = if_i{\sqrt{2}}^{i^2}$, $b_i= {\sqrt{2}}^{-i^2}$, $NTT$求一下$a*b$即可
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <cmath> #include <set> #include <map> #include <queue> #include <string> #include <cstring> #include <bitset> #include <functional> #include <random> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef int* poly; const int P = 998244353, G = 3, Gi = 332748118, sqr = 116195171; ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} const int N = 1e6+10; int n,phi[N],f[N]; int A[N],B[N],R[N],l,lim; void init(int n) { for (lim=1,l=0; lim<=n; lim<<=1,++l) ; REP(i,0,lim-1) R[i]=(R[i>>1]>>1)|((i&1)<<(l-1)); } void NTT(poly J, int tp=1) { REP(i,0,lim-1) if (i<R[i]) swap(J[i],J[R[i]]); for (int j=1; j<lim; j<<=1) { ll T = qpow(tp==1?G:Gi,(P-1)/(j<<1)); for (int k=0; k<lim; k+=j<<1) { ll t = 1; for (int l=0; l<j; ++l,t=t*T%P) { int y = t*J[k+j+l]%P; J[k+j+l] = (J[k+l]-y)%P; J[k+l] = (J[k+l]+y)%P; } } } if (tp==-1) { ll inv = qpow(lim, P-2); REP(i,0,lim-1) J[i]=(ll)inv*J[i]%P; } } poly mul(poly a, poly b) { init((n+1)*2); REP(i,0,lim-1) A[i]=B[i]=0; REP(i,0,n) A[i]=a[i],B[i]=b[i]; NTT(A),NTT(B); poly c(new int[lim]); REP(i,0,lim-1) c[i]=(ll)A[i]*B[i]%P; NTT(c,-1); return c; } void work() { scanf("%d", &n); REP(i,1,n) f[i] = 0; REP(i,1,n) ++f[phi[i]]; poly a(new int[n+1]),b(new int[n+1]); REP(i,0,n) { a[i] = (ll)i*f[i]%P*qpow(sqr,(ll)i*i%(P-1))%P; b[i] = qpow(sqr,P-1-(ll)i*i%(P-1)); } poly g = mul(a,b); int ans = 0; REP(i,1,n) ans = (ans+(ll)i*f[i]%P*qpow(sqr,(ll)i*i%(P-1))%P*g[i])%P; ans = ans*2%P; REP(i,1,n) ans = (ans-(ll)i*i%P*f[i]%P*f[i]%P*qpow(2,(ll)i*i%(P-1)))%P; if (ans<0) ans += P; printf("%d\n", ans); } int main() { REP(i,1,N-1) phi[i] = i; REP(i,2,N-1) if (phi[i]==i) { for (int j=i, t=i-1; j<N; j+=i) { phi[j] = phi[j]/j*t; } } int t; scanf("%d", &t); while (t--) work(); }
D. Robots
假设点$x$到$n$期望天数为${dp}_x$, 最终答案为${ans}_x$, 那么有
$${dp}_x=\frac{\sum{dp}_y+{dp}_x}{{deg}_x+1}+1$$
$${ans}_x=\frac{\sum{ans}_y+{ans}_x}{{deg}_x+1}+{dp}_x$$
第二个式子就是费用把提前计算. 因为是有向无环图, 可以建反向图, 然后拓排求出. 最终答案为${ans}_1$
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <cmath> #include <set> #include <map> #include <queue> #include <string> #include <cstring> #include <bitset> #include <functional> #include <random> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head const int N = 1e5+10; int n, m, deg[N], tot[N]; vector<int> g[N]; double dp[N], ans[N]; queue<int> q; void work() { scanf("%d%d",&n,&m); REP(i,0,n+1) g[i].clear(), deg[i] = tot[i] = dp[i] = ans[i] = 0; REP(i,1,m) { int u, v; scanf("%d%d",&u,&v); g[v].pb(u), ++deg[u], ++tot[u]; } q.push(n); while (q.size()) { int u = q.front(); q.pop(); if (u!=n) { dp[u] = (dp[u]+1+tot[u])/tot[u]; ans[u] = (ans[u]+dp[u]+1+tot[u])/tot[u]; } for (auto v:g[u]) { dp[v] += dp[u]; ans[v] += ans[u]+dp[u]; if (!--deg[v]) { q.push(v); } } } printf("%.2lf\n",ans[1]); } int main() { int t; scanf("%d", &t); while (t--) work(); }
E. K sum
枚举$gcd$, 莫比乌斯反演一下可以得到$f_n(k)=\sum\limits_{i=1}^n i^2 \sum\limits_{d=1}^{\lfloor\frac{n}{i}\rfloor}\mu(d)\lfloor\frac{n}{id}\rfloor ^k$
比赛的时候推到这里就不会了, 这种题还是做的太少了.
然后可以枚举$id$, 就有$f_n(k)=\sum\limits_{i=1}^n\lfloor\frac{n}{i}\rfloor^k\sum\limits_{d|i}\mu(d)(\frac{i}{d})^2$
再交换一下求和次序, 就得到$\sum\limits_{i=2}^k f_n(i)=\sum\limits_{j=1}^n(\sum\limits_{i=2}^k\lfloor\frac{n}{j}\rfloor^i)(\sum\limits_{d|j}\mu(d)(\frac{j}{d})^2)$
左边是等比数列可以$O(log)$求和, 特判下公比为一的情况. 右边是$\mu * Id^2$, 可以用杜教筛求和.
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <cmath> #include <set> #include <map> #include <queue> #include <string> #include <cstring> #include <bitset> #include <functional> #include <random> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head const int N = 1e5+10; const int inv6 = 166666668; const int N2 = 5e6+10; int cnt,f[N2],p[N2],vis[N2]; map<int,int> S2; int n, k; char s[N]; void init() { f[1] = 1; REP(i,2,N2-1) { if (!vis[i]) p[++cnt]=i,f[i] = ((ll)i*i-1)%P; for (int j=1,t;j<=cnt&&i*p[j]<N2; ++j) { vis[t=i*p[j]] = 1; if (i%p[j]==0) {f[t]=(ll)f[i]*p[j]%P*p[j]%P;break;} f[t] = (ll)f[i]*f[p[j]]%P; } } REP(i,2,N2-1) f[i] = (f[i]+f[i-1])%P; } int g(int n) {return 1;} int sum_g(int n) {return n;} int sum_fg(int n) {return (ll)n*(n+1)%P*(2*n+1)%P*inv6%P;} int sum(int n) { if (n<N2) return f[n]; if (S2.count(n)) return S2[n]; int ans = sum_fg(n), mx = sqrt(n); REP(i,2,mx) ans=(ans-(ll)g(i)*sum(n/i))%P; for (int i=mx+1,j,k=n/i; i<=n; i=j+1,--k) { j = n/k; ans = (ans-(ll)(sum_g(j)-sum_g(i-1))*sum(k))%P; } return S2[n]=ans; } void work() { scanf("%d%s", &n, s+1); int len = strlen(s+1); int k_minus = 0, k_plus = 0; REP(i,1,len) { k_minus = (k_minus*10ll+s[i]-'0')%P; k_plus = (k_plus*10ll+s[i]-'0')%(P-1); } k_plus = (k_plus+1)%(P-1); k_minus = (k_minus-1)%P; int ans = 0; for (int i=1,j; i<=n; i=j+1) { int t = n/i; j = n/t; int ret; if (t==1) ret = k_minus; else ret = (qpow(t,k_plus)-(ll)t*t)%P*inv(t-1)%P; ans = (ans+(ll)(sum(j)-sum(i-1))*ret)%P; } if (ans<0) ans += P; printf("%d\n", ans); } int main() { init(); int t; scanf("%d", &t); while (t--) work(); }