Python全栈开发之路 【第五篇】:Python基础之函数进阶(装饰器、生成器&迭代器)

本节内容

一、名称空间

  又名name space,就是存放名字的地方。举例说明,若变量x=1,1存放于内存中,那名字x存放在哪里呢?名称空间正是存放名字x与1绑定关系的地方。

名称空间共3种,分别如下:

  • locals: 是函数内的名称空间,包括局部变量和形参
  • globals: 全局变量,函数定义所在模块的名字空间
  • builtins: 内置模块的名字空间

不同变量的作用域不同就是由这个变量所在的命名空间决定的。

作用域即范围

  • 全局范围:全局存活,全局有效
  • 局部范围:临时存活,局部有效

查看作用域方法: globals(),locals()

作用域查找顺序

level = 'L0'
n = 22 def func():
level = 'L1'
n = 33
print(locals()) def outer():
n = 44
level = 'L2'
print(locals(),n) def inner():
level = 'L3'
print(locals(),n) #此外打印的n是多少?
inner()
outer() func()

LEGB 代表名字查找顺序: locals -> enclosing function -> globals -> __builtins__

  • locals 是函数内的名字空间,包括局部变量和形参
  • enclosing 外部嵌套函数的名字空间
  • globals 全局变量,函数定义所在模块的名字空间
  • builtins 内置模块的名字空间

二、闭包

  关于闭包,即函数定义和函数表达式位于另一个函数的函数体内(嵌套函数)。而且,这些内部函数可以访问它们所在的外部函数中声明的所有局部变量、参数。当其中一个这样的内部函数在包含它们的外部函数之外被调用时,就会形成闭包。也就是说,内部函数会在外部函数返回后被执行。而当这个内部函数执行时,它仍然必需访问其外部函数的局部变量、参数以及其他内部函数。这些局部变量、参数和函数声明(最初时)的值是外部函数返回时的值,但也会受到内部函数的影响。

def outer():
name = 'alex' def inner():
print("在inner里打印外层函数的变量",name) return inner f = outer() f()

闭包的意义:返回的函数对象,不仅仅是一个函数对象,在该函数外还包裹了一层作用域,这使得,该函数无论在何处调用,优先使用自己外层包裹的作用域

三、装饰器

  装饰器就是闭包函数的一种应用场景。遵循 开放-封闭原则:封闭:已实现的功能代码块不应该被修改;开放:对现有功能的扩展开放。

什么是装饰器?

  装饰器他人的器具,本身可以是任意可调用对象,被装饰者也可以是任意可调用对象。强调装饰器的原则:1 不修改被装饰对象的源代码 2 不修改被装饰对象的调用方式装饰器的目标:在遵循1和2的前提下,为被装饰对象添加上新功能。

装饰器的应用

#_*_coding:utf-8_*_

user_status = False #用户登录了就把这个改成True

def login(func): #把要执行的模块从这里传进来

    def inner(*args,**kwargs):#再定义一层函数
_username = "alex" #假装这是DB里存的用户信息
_password = "abc!23" #假装这是DB里存的用户信息
global user_status if user_status == False:
username = input("user:")
password = input("pasword:") if username == _username and password == _password:
print("welcome login....")
user_status = True
else:
print("wrong username or password!") if user_status == True:
func(*args,**kwargs) # 看这里看这里,只要验证通过了,就调用相应功能 return inner #用户调用login时,只会返回inner的内存地址,下次再调用时加上()才会执行inner函数 def home():
print("---首页----") @login
def america():
#login() #执行前加上验证
print("----欧美专区----") def japan():
print("----日韩专区----") # @login
def henan(style):
'''
:param style: 喜欢看什么类型的,就传进来
:return:
'''
#login() #执行前加上验证
print("----河南专区----") home()
# america = login(america) #你在这里相当于把america这个函数替换了
henan = login(henan) # #那用户调用时依然写
america() henan("3p")

无参数装饰器

#_*_coding:utf-8_*_
user_status = False #用户登录了就把这个改成True def login(auth_type): #把要执行的模块从这里传进来
def auth(func):
def inner(*args,**kwargs):#再定义一层函数
if auth_type == "qq":
_username = "alex" #假装这是DB里存的用户信息
_password = "abc!23" #假装这是DB里存的用户信息
global user_status if user_status == False:
username = input("user:")
password = input("pasword:") if username == _username and password == _password:
print("welcome login....")
user_status = True
else:
print("wrong username or password!") if user_status == True:
return func(*args,**kwargs) # 看这里看这里,只要验证通过了,就调用相应功能
else:
print("only support qq ")
return inner #用户调用login时,只会返回inner的内存地址,下次再调用时加上()才会执行inner函数 return auth def home():
print("---首页----") @login('qq')
def america():
#login() #执行前加上验证
print("----欧美专区----") def japan():
print("----日韩专区----") @login('weibo')
def henan(style):
'''
:param style: 喜欢看什么类型的,就传进来
:return:
'''
#login() #执行前加上验证
print("----河南专区----") home()
# america = login(america) #你在这里相当于把america这个函数替换了
#henan = login(henan) # #那用户调用时依然写
america() # henan("3p")

有参数装饰器

装饰器补充:wraps

from functools import wraps

def deco(func):
@wraps(func) #加在最内层函数正上方
def wrapper(*args,**kwargs):
return func(*args,**kwargs)
return wrapper @deco
def index():
'''哈哈哈哈'''
print('from index') print(index.__doc__)

四、列表生成式

现在有个需求,看列表[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],要求你把列表里的每个值加1,怎么实现?你可能会想到2种方式

>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> b = []
>>> for i in a:b.append(i+1)
...
>>> b
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a = b
>>> a
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

二逼青年版

>>> a
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a = map(lambda x:x+1, a)
>>> a
<map object at 0x101d2c630>
>>> for i in a:print(i)
...
3
5
7
9
11

文艺青年版

装逼青年版

>>> a = [i+1 for i in range(10)]
>>> a
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

 这样的写法就是列表生成式

五、生成器

通过列表生成式,可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

generator保存的是算法,每次调用next(g)就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

>>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
...
0
1
4
9
16
25
36
49
64
81

所以,创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return 'done' # 输出
>>> fib(10)
1
1
2
3
5
8
13
21
34
55
done

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(max):
n,a,b = 0,0,1 while n < max:
#print(b)
yield b
a,b = b,a+b
n += 1 return 'done'

 这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>

 这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次被next()调用时从上次返回的yield语句处继续执行。

data = fib(10)
print(data) print(data.__next__())
print(data.__next__())
print("干点别的事")
print(data.__next__())
print(data.__next__())
print(data.__next__())
print(data.__next__())
print(data.__next__()) #输出
<generator object fib at 0x000002E33EEFFCA8>
1
1
干点别的事
2
3
5
8
13

 在上面fib的例子,在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代。

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

>>> g = fib(6)
>>> while True:
... try:
... x = next(g)
... print('g:', x)
... except StopIteration as e:
... print('Generator return value:', e.value)
... break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done

 还可通过yield实现在单线程的情况下实现并发运算的效果

#_*_coding:utf-8_*_
__author__ = 'hyp' import time
def consumer(name):
print("%s 准备吃包子啦!" %name)
while True:
baozi = yield print("包子[%s]来了,被[%s]吃了!" %(baozi,name)) def producer(name):
c = consumer('A')
c2 = consumer('B')
c.__next__()
c2.__next__()
print("老子开始准备做包子啦!")
for i in range(10):
time.sleep(1)
print("做了2个包子!")
c.send(i)
c2.send(i) producer("hyp") 通过生成器实现协程并行运算

六、迭代器

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如listtupledictsetstr等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

可以使用isinstance()判断一个对象是否是Iterable对象:

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

 而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。

可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

listdictstrIterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

为什么listdictstr等数据类型不是Iterator

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

总结:

  凡是可作用于for循环的对象都是Iterable类型;

  凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

  集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python3的for循环本质上就是通过不断调用next()函数实现的,例如:

for x in [1, 2, 3, 4, 5]:
pass

 实际上完全等价于:

# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
try:
# 获得下一个值:
x = next(it)
except StopIteration:
# 遇到StopIteration就退出循环
break

 

上一篇:Maintainable HashCode and Equals Using Apache Commons


下一篇:android104 帧动画,补间动画,属性动画