\(Description\)
1堆石子有n个。两人轮流取。先取者第1次可以取任意多个,但不能全部取完。以后每次取的石子数不能超过上次取子数的2倍,取完者胜。问谁能赢。
\(Solution\)
斐波那契博弈(Fibonacci Nim)
结论: 后手必胜当且仅当石子数为Fibonacci数
证明见: http://blog.csdn.net/dgq8211/article/details/7602807
#include <cstdio>
const int INF=0x7fffffff;
int cnt;
long long f[2333];
int Find(int x)
{
int l=1,r=cnt-1,mid;
while(l<r)
if(f[mid=l+r>>1]>=x) r=mid;
else l=mid+1;
return l;
}
int main()
{
f[0]=f[1]=1;
for(cnt=2; f[cnt-1]<=INF; ++cnt) f[cnt]=f[cnt-1]+f[cnt-2];
int n;
while(scanf("%d",&n),n)
puts(n==f[Find(n)]?"Second win":"First win");
return 0;
}