Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 15533 | Accepted: 4995 |
Description
Farmer John's farm consists of a long row of N (1 <= N <= 100,000)fields. Each field contains a certain number of cows, 1 <= ncows <= 2000.FJ wants to build a fence around a contiguous group of these fields in order to maximize the average number of cows per field within that block. The block must contain at least F (1 <= F <= N) fields, where F given as input.
Calculate the fence placement that maximizes the average, given the constraint.
Input
* Line 1: Two space-separated integers, N and F.* Lines 2..N+1: Each line contains a single integer, the number of cows in a field. Line 2 gives the number of cows in field 1,line 3 gives the number in field 2, and so on.
Output
* Line 1: A single integer that is 1000 times the maximal average.Do not perform rounding, just print the integer that is 1000*ncows/nfields.Sample Input
10 6 6 4 2 10 3 8 5 9 4 1
Sample Output
6500
Source
USACO 2003 March Green
解析:二分法
求每一项与均值的差,如果差之和大于等于0,这说明均值满足条件,找到最大的满足条件的均值即可。
#include<iostream> #include<cstdio> using namespace std; const int maxn=100010; int n,f; double a[maxn],b[maxn],sum[maxn],maxx[maxn]; int check(double mid){ for(int i=1;i<=n;i++){ sum[i]=sum[i-1]+a[i]-mid; } double mintemp=0x3f3f3f3f; for(int j=f;j<=n;j++){ mintemp=min(mintemp,sum[j-f]);//1~j-f最小的那个和 if(sum[j]-mintemp>=0)return true; } return false; } int main(){ cin>>n>>f; for(int i=1;i<=n;i++) cin>>a[i]; double l=0,r=2000,mid; for(int i=1;i<=40;i++){ mid=(l+r)/2; if(check(mid))l=mid; else r=mid; } cout << int(r * 1000);//如果把r该位l会WR // printf("%.0lf",r*1000);//四舍五入,而牛只能向下取整 return 0; }