搬运来源(侵删):
https://zhuanlan.zhihu.com/p/86529347
1.深度学习中batch size的大小对训练过程的影响是什么样的?
不考虑bn的情况下,batch size的大小决定了深度学习训练过程中的完成每个epoch所需的时间和每次迭代(iteration)之间梯度的平滑程度。batch size只能说影响完成每个epoch所需要的时间,决定也算不上吧。根本原因还是CPU,GPU算力吧。瓶颈如果在CPU,例如随机数据增强,batch size越大有时候计算的越慢。
对于一个大小为N的训练集,如果每个epoch中mini-batch的采样方法采用最常规的N个样本每个都采样一次,设mini-batch大小为b,那么每个epoch所需的迭代次数(正向+反向)为 , 因此完成每个epoch所需的时间大致也随着迭代次数的增加而增加。
由于目前主流深度学习框架处理mini-batch的反向传播时,默认都是先将每个mini-batch中每个instance得到的loss平均化之后再反求梯度,也就是说每次反向传播的梯度是对mini-batch中每个instance的梯度平均之后的结果,所以b的大小决定了相邻迭代之间的梯度平滑程度,b太小,相邻mini-batch间的差异相对过大,那么相邻两次迭代的梯度震荡情况会比较严重,不利于收敛;b越大,相邻mini-batch间的差异相对越小,虽然梯度震荡情况会比较小,一定程度上利于模型收敛,但如果b极端大,相邻mini-batch间的差异过小,相邻两个mini-batch的梯度没有区别了,整个训练过程就是沿着一个方向蹭蹭蹭往下走,很容易陷入到局部最小值出不来。
总结下来:batch size过小,花费时间多,同时梯度震荡严重,不利于收敛;batch size过大,不同batch的梯度方向没有任何变化,容易陷入局部极小值。
2 讲讲正则化为什么能降低过拟合程度,并且说明下下L1正则化和L2正则化。
正则化之所以能够降低过拟合的原因在于,正则化是结构风险最小化的一种策略实现。
给loss function加上正则化项,能使得新得到的优化目标函数h = f+normal,需要在f和normal中做一个权衡(trade-off),如果还像原来只优化f的情况下,那可能得到一组解比较复杂,使得正则项normal比较大,那么h就不是最优的,因此可以看出加正则项能让解更加简单,符合奥卡姆剃刀理论,同时也比较符合在偏差和方差(方差表示模型的复杂度)分析中,通过降低模型复杂度,得到更小的泛化误差,降低过拟合程度。
L1正则化和L2正则化:
L1正则化就是在loss function后边所加正则项为L1范数,加上L1范数容易得到稀疏解(0比较多)。L2正则化就是loss function后边所加正则项为L2范数的平方,加上L2正则相比于L1正则来说,得到的解比较平滑(不是稀疏),但是同样能够保证解中接近于0(但不是等于0,所以相对平滑)的维度比较多,降低模型的复杂度。
3 什么是优化器?
一言以蔽之,优化器就是在深度学习反向传播过程中,指引损失函数(目标函数)的各个参数往正确的方向更新合适的大小,使得更新后的各个参数让损失函数(目标函数)值不断逼近全局最小。