applyVerticalSizeRules(params, myHeight);
measureChild(child, params, myWidth, myHeight);
if (positionChildVertical(child, params, myHeight, isWrapContentHeight)) {
offsetVerticalAxis = true;
}
if (isWrapContentWidth) {
if (isLayoutRtl()) {
if (targetSdkVersion < Build.VERSION_CODES.KITKAT) {
width = Math.max(width, myWidth - params.mLeft);
} else {
width = Math.max(width, myWidth - params.mLeft - params.leftMargin);
}
} else {
if (targetSdkVersion < Build.VERSION_CODES.KITKAT) {
width = Math.max(width, params.mRight);
} else {
width = Math.max(width, params.mRight + params.rightMargin);
}
}
}
if (isWrapContentHeight) {
if (targetSdkVersion < Build.VERSION_CODES.KITKAT) {
height = Math.max(height, params.mBottom);
} else {
height = Math.max(height, params.mBottom + params.bottomMargin);
}
}
if (child != ignore || verticalGravity) {
left = Math.min(left, params.mLeft - params.leftMargin);
top = Math.min(top, params.mTop - params.topMargin);
}
if (child != ignore || horizontalGravity) {
right = Math.max(right, params.mRight + params.rightMargin);
bottom = Math.max(bottom, params.mBottom + params.bottomMargin);
}
}
}
根据源码我们发现RelativeLayout会对子View做两次measure。这是为什么呢?首先RelativeLayout中子View的排列方式是基于彼此的依赖关系,而这个依赖关系可能和布局中View的顺序并不相同,在确定每个子View的位置的时候,就需要先给所有的子View排序一下。又因为RelativeLayout允许A,B 2个子View,横向上B依赖A,纵向上A依赖B。所以需要横向纵向分别进行一次排序测量。
LinearLayout的onMeasure()方法
@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
if (mOrientation == VERTICAL) {
measureVertical(widthMeasureSpec, heightMeasureSpec);
} else {
measureHorizontal(widthMeasureSpec, heightMeasureSpec);
}
}
与RelativeLayout相比LinearLayout的measure就简单明了的多了,先判断线性规则,然后执行对应方向上的测量。随便看一个吧。
for (int i = 0; i < count; ++i) {
final View child = getVirtualChildAt(i);
if (child == null) {
mTotalLength += measureNullChild(i);
continue;
}
if (child.getVisibility() == View.GONE) {
i += getChildrenSkipCount(child, i);
continue;
}
if (hasDividerBeforeChildAt(i)) {
mTotalLength += mDividerHeight;
}
LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams) child.getLayoutParams();
totalWeight += lp.weight;
if (heightMode == MeasureSpec.EXACTLY && lp.height == 0 && lp.weight > 0) {
// Optimization: don’t bother measuring children who are going to use
// leftover space. These views will get measured again down below if
// there is any leftover space.
final int totalLength = mTotalLength;
mTotalLength = Math.max(totalLength, totalLength + lp.topMargin + lp.bottomMargin);
} else {
int oldHeight = Integer.MIN_VALUE;
if (lp.height == 0 && lp.weight > 0) {
// heightMode is either UNSPECIFIED or AT_MOST, and this
// child wanted to stretch to fill available space.
// Translate that to WRAP_CONTENT so that it does not end up
// with a height of 0
oldHeight = 0;
lp.height = LayoutParams.WRAP_CONTENT;
}
// Determine how big this child would like to be. If this or
// previous children have given a weight, then we allow it to
// use all available space (and we will shrink things later
// if needed).
measureChildBeforeLayout(
child, i, widthMeasureSpec, 0, heightMeasureSpec,
totalWeight == 0 ? mTotalLength : 0);
if (oldHeight != Integer.MIN_VALUE) {
lp.height = oldHeight;
}
final int childHeight = child.getMeasuredHeight();
final int totalLength = mTotalLength;
mTotalLength = Math.max(totalLength, totalLength + childHeight + lp.topMargin +
lp.bottomMargin + getNextLocationOffset(child));
if (useLargestChild) {
largestChildHeight = Math.max(childHeight, largestChildHeight);
}
}
父视图在对子视图进行measure操作的过程中,使用变量mTotalLength保存已经measure过的child所占用的高度,该变量刚开始时是0。在for循环中调用measureChildBeforeLayout()对每一个child进行测量,该函数实际上仅仅是调用了measureChildWithMargins(),在调用该方法时,使用了两个参数。其中一个是heightMeasureSpec,该参数为LinearLayout本身的measureSpec;另一个参数就是mTotalLength,代表该LinearLayout已经被其子视图所占用的高度。 每次for循环对child测量完毕后,调用child.getMeasuredHeight()获取该子视图最终的高度,并将这个高度添加到mTotalLength中。**在本步骤中,暂时避开了lp.weight>0的子视图,即暂时先不测量这些子视图,因为后面将把父视图剩余的高度按照weight值的大小平均分配给相应的子视图。**源码中使用了一个局部变量totalWeight累计所有子视图的weight值。处理lp.weight>0的情况需要注意,如果变量heightMode是EXACTLY,那么,当其他子视图占满父视图的高度后,weight>0的子视图可能分配不到布局空间,从而不被显示,只有当heightMode是AT_MOST或者UNSPECIFIED时,weight>0的视图才能优先获得布局高度。最后我们的结论是:如果不使用weight属性,LinearLayout会在当前方向上进行一次measure的过程,如果使用weight属性,LinearLayout会避开设置过weight属性的view做第一次measure,完了再对设置过weight属性的view做第二次measure。由此可见,weight属性对性能是有影响的,而且本身有大坑,请注意避让。
小结
从源码中我们似乎能看出,我们先前的测试结果中RelativeLayout不如LinearLayout快的根本原因是RelativeLayout需要对其子View进行两次measure过程。而LinearLayout则只需一次measure过程,所以显然会快于RelativeLayout,但是如果LinearLayout中有weight属性,则也需要进行两次measure,但即便如此,应该仍然会比RelativeLayout的情况好一点。
最后送福利了,现在关注我并且加入群聊可以获取包含源码解析,自定义View,动画实现,架构分享等。
内容难度适中,篇幅精炼,每天只需花上十几分钟阅读即可。
大家可以跟我一起探讨,欢迎加群探讨,有flutter—底层开发—性能优化—移动架构—资深UI工程师 —NDK相关专业人员和视频教学资料,还有更多面试题等你来拿
点击GitHub领取
%BA%9B%EF%BC%9F%E5%A6%82%E4%BD%95%E9%9D%A2%E8%AF%95%E6%8B%BF%E9%AB%98%E8%96%AA%EF%BC%81.md)**
[外链图片转存中…(img-GlNItQYc-1643948611727)]