快速入门PaddleOCR,并试用其开发一个搜题小工具

介绍

PaddleOCR 是一个基于百度飞桨的OCR工具库,包含总模型仅8.6M的超轻量级中文OCR,单模型支持中英文数字组合识别、竖排文本识别、长文本识别。同时支持多种文本检测、文本识别的训练算法。

本教程将介绍PaddleOCR的基本使用方法以及如何使用它开发一个自动搜题的小工具。

项目地址:

https://gitee.com/puzhiweizuishuai/OCR-CopyText-And-Search

OR

https://github.com/PuZhiweizuishuai/OCR-CopyText-And-Search

安装

虽然PaddleOCR支持服务端部署并提供识别API,但根据我们的需求,搭建一个本地离线的OCR识别环境,所以此次我们只介绍如何在本地安装并是被的做法。

安装PaddlePaddle飞桨框架

一、环境准备

1.1 目前飞桨支持的环境

Windows 7/8/10 专业版/企业版 (64bit)

GPU版本支持CUDA 10.1/10.2/11.0/11.2,且仅支持单卡

Python 版本 3.6+/3.7+/3.8+/3.9+ (64 bit)

pip 版本 20.2.2或更高版本 (64 bit)

二、安装命令

pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple

(注意此版本为CPU版本,如需GPU版本请查看PaddlePaddle文档)

安装完成后您可以使用 python 进入python解释器,输入import paddle ,再输入 paddle.utils.run_check()

如果出现PaddlePaddle is installed successfully!,说明您已成功安装。

安装PaddleOCR

pip install "paddleocr>=2.0.1" # 推荐使用2.0.1+版本

代码使用

安装完成后你可以使用以下代码来进行简单的功能测试


from paddleocr import PaddleOCR, draw_ocr # Paddleocr目前支持中英文、英文、法语、德语、韩语、日语,可以通过修改lang参数进行切换
# 参数依次为`ch`, `en`, `french`, `german`, `korean`, `japan`。
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
# 选择你要识别的图片路径
img_path = '11.jpg'
result = ocr.ocr(img_path, cls=True)
for line in result:
print(line) # 显示结果
from PIL import Image image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/fonts/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')

结果是一个list,每个item包含了文本框,文字和识别置信度

[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
......

可视化效果

快速入门PaddleOCR,并试用其开发一个搜题小工具

至此我们就掌握了 PaddleOCR 的基本使用,基于这个我们就能开发出一个OCR的搜题小工具了。

更多使用方法请参考:https://aistudio.baidu.com/aistudio/projectdetail/507159

搜题小工具

现在有很多那种答题竞赛的小游戏,在限定时间内看谁答题正确率更高。或者现在一些单位会搞一些大练兵什么的竞赛,需要在网上答题,这个时候手动输入题目去搜索就很慢,效率也不会太高,所以我们就可以来写一个脚本,帮助我们完成搜题的过程。

基本思路就是通过ADB截取当前屏幕,然后剪切出题目所在位置,然后通过PaddleOCR来获取题目文字,之后打开搜索引擎搜索或者打开题库搜索。

安装ADB

你可以到这里下载安装ADB之后配置环境变量。

配置完环境变量后在终端输入adb,如果出现以下字符则证明adb安装完成。

Android Debug Bridge version 1.0.41
Version 31.0.3-7562133

截图并保存题目区域图片

import os
from PIL import Image # 截图
def pull_screenshot():
os.system('adb shell screencap -p /sdcard/screenshot.png')
os.system('adb pull /sdcard/screenshot.png .') img = Image.open("./screenshot.png")
# 切割问题区域
# (起始点的横坐标,起始点的纵坐标,宽度,高度)
question = img.crop((10, 400, 1060, 1000))
# 保存问题区域
question.save("./question.png")

OCR识别,获取题目

ocr = PaddleOCR(use_angle_cls=False,
lang="ch",
show_log=False
) # need to run only once to download and load model into memory
img_path = 'question.png'
result = ocr.ocr(img_path, cls=False) # 获取题目文本
questionList = [line[1][0] for line in result]
text = ""
# 将数组转换为字符串
for str in questionList :
text += str
print(text)

打开浏览器搜索

import webbrowser
webbrowser.open('https://baidu.com/s?wd=' + urllib.parse.quote(question))

之后你就可以查看搜索结果了

如果有题库,你还可以使用pyautogui来模拟鼠标键盘操作,去操作Word等软件在题库中进行搜索。

完整代码

# -*- coding: utf-8 -*-

# @Author  : Pu Zhiwei
# @Time : 2021-09-02 20:29 from PIL import Image
import os
import matplotlib.pyplot as plt
from paddleocr import PaddleOCR, draw_ocr
import pyperclip
import pyautogui
import time
import webbrowser
import urllib.parse # 鼠标位置
currentMouseX, currentMouseY = 60, 282 # 截图获取当前题目
def pull_screenshot():
os.system('adb shell screencap -p /sdcard/screenshot.png')
os.system('adb pull /sdcard/screenshot.png .') # 移动鼠标到搜索框搜索
def MoveMouseToSearch():
# duration 参数,移动时间,即用时0.1秒移动到对应位置
pyautogui.moveTo(currentMouseX, currentMouseY, duration=0.1)
# 左键点击
pyautogui.click()
pyautogui.click()
# 模拟组合键,粘贴
pyautogui.hotkey('ctrl', 'v') # 扩充问题
def AddText(list, length, text):
if length > 3:
return text + list[3]
else:
return text
# 打开浏览器
def open_webbrowser(question):
webbrowser.open('https://baidu.com/s?wd=' + urllib.parse.quote(question)) # 显示所识别的题目
def ShowAllQuestionText(list):
text = ""
for str in list:
text += str
print(text) if __name__ == "__main__":
while True:
print("\n\n请将鼠标放在Word的搜索框上,三秒后脚本将自动获取Word搜索框位置!\n\n")
# 延时三秒输出鼠标位置
time.sleep(3)
# 获取当前鼠标位置
currentMouseX, currentMouseY = pyautogui.position()
print('当前鼠标位置为: {0} , {1}'.format(currentMouseX, currentMouseY))
start = input("按y键程序开始运行,按其他键重新获取搜索框位置:")
if start == 'y':
break while True:
t = time.perf_counter()
pull_screenshot()
img = Image.open("./screenshot.png")
# 切割问题区域
# (起始点的横坐标,起始点的纵坐标,宽度,高度)
question = img.crop((10, 400, 1060, 1000))
# 保存问题区域
question.save("./question.png") # 加载 PaddleOCR
# Paddleocr目前支持中英文、英文、法语、德语、韩语、日语,可以通过修改lang参数进行切换
# 参数依次为`ch`, `en`, `french`, `german`, `korean`, `japan`。 # 自定义模型地址
# det_model_dir='./inference/ch_ppocr_server_v2.0_det_train',
# rec_model_dir='./inference/ch_ppocr_server_v2.0_rec_pre',
# cls_model_dir='./inference/ch_ppocr_mobile_v2.0_cls_train',
ocr = PaddleOCR(use_angle_cls=False,
lang="ch",
show_log=False
) # need to run only once to download and load model into memory
img_path = 'question.png'
result = ocr.ocr(img_path, cls=False) questionList = [line[1][0] for line in result]
length = len(questionList)
text = ""
if length < 1:
text = questionList[0]
elif length == 2:
text = questionList[1]
else:
text = questionList[1] + questionList[2] print('\n\n')
ShowAllQuestionText(questionList)
# 将结果写入剪切板
pyperclip.copy(text)
# 点击搜索
MoveMouseToSearch() # 计算时间
print('\n\n')
end_time3 = time.perf_counter()
print('用时: {0}'.format(end_time3 - t)) go = input('输入回车继续运行,输入 e 打开浏览器搜索,输入 a 增加题目长度,输入 n 结束程序运行: ')
if go == 'n':
break if go == 'a':
text = AddText(questionList, length, text)
pyperclip.copy(text)
# 点击搜索
MoveMouseToSearch()
stop = input("输入回车继续")
elif go == 'e':
# 打开浏览器
open_webbrowser(text)
stop = input("输入回车继续") print('\n------------------------\n\n')
上一篇:soliworks三维机柜布局(三)绘制电气线路图


下一篇:阿里巴巴JAVA常考面试题及汇总答案