如果使用Python做大型海量数据批量任务时,并且backend用mongodb做数据储存时,常常面临大量读写数据库的情况。尤其是大量更新任务,由于不能批量操作,我们知道pymongo是同步任务机制,相当耗时。
如果采用多线程、多进程的方案确实有效,但编写麻烦、消耗系统资源大(pymongo还不允许fork线程*用连接)。这里主要瓶颈在于IO,使用单线程异步操作就会效果很好。
Motor是一个异步mongodb driver,支持异步读写mongodb。它通常用在基于Tornado的异步web服务器中。
Motor同时支持使用asyncio(Python3.4以上标准库)作为异步模型,使用起来十分方便。
我们来测试一下效率,使用传统pymongo来进行批量读写 mongo_test.py:
host = '127.0.0.1' port = 27017 database = 'LiePin' import time start = time.clock() from pymongo import MongoClient connection = MongoClient( host, port ) db = connection[database] for doc in db.LiePin_Analysis1.find({}, ['_id', 'JobTitle', 'is_end']): db.LiePin_Analysis1.update_one({'_id': doc.get('_id')}, { '$set': { 'is_end': 1 } }) elapsed = (time.clock() - start) print("Time used:",elapsed)
运行一下,发现用了4秒左右
再使用motor以异步的形式来编写脚本 motor_test.py
host = '127.0.0.1' port = 27017 database = 'LiePin' import time start = time.clock() import asyncio from motor.motor_asyncio import AsyncIOMotorClient connection = AsyncIOMotorClient( host, port ) db = connection[database] async def run(): async for doc in db.LiePin_Analysis1.find({}, ['_id', 'JobTitle', 'is_end']): db.LiePin_Analysis1.update_one({'_id': doc.get('_id')}, {'$set': {'is_end':0}}) asyncio.get_event_loop().run_until_complete(run()) elapsed = (time.clock() - start) print("Time used:",elapsed)
仅仅1秒左右就完成了任务