NYOJ题目170网络的可靠性

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAs8AAANvCAIAAACte6C6AAAgAElEQVR4nOydPbLcNhOu7yaUayGOZyMqJsqU3piJHXkJquIKHKjKKZMbO7QzZt8yeAMSQP+jwRlK50jvU67v05kh8dNoNF40OeT/2QEAAAAA7uT//OgGAAAAAOAnB2oDAAAAAPcCtQEAAACAe4HaAAAAAMC9QG0AAAAA4F6gNgAAAABwL1AbAAAAALgXqA0AAAAA3AvUBgAAAADuBWoDgJ+Dv75+/PD7n//yD//9+/Hhy8cPXz7/5Z32vz9/+/Lxw5ePv/39H/n0vz9+//jhy8dP/7y6lf98/vDl44cvjz/+12rhVWu+ffpiN+bsneo1AODNAbUBwNvhr68fP3wZ+I8swOeS/OHrN1Le+WGwnBc5ciz/hVMTiNL2fW/qZOS/qnVOedH/z+pF6ezx5+OP/0FtAPB+gNoA4O1wWW2YOQyvNJokOI9hC3bVBFyCHDyhNkojn1MbZwM+/4XcBgDvCKgNAN4O59qvMwoSc7v/8be///v378e5+tb8hKM2bC3y9Zt3Yu96h9URpn50omXsSsohgD59bQoDagOAdwPUBgBvh6I2Pn9qmoMv0v/787cvjz/+x9QGSWzU6ymf9YUVoQActfH5kyU1nlUbFzIiv//57/7t05ePv/39Z2vS129x+meokQCA7wfUBgBvB76Ufv5rJykKuptnWQqe2Pjy8cPvf/5FDjvzH6Wcuh7zPIq6o6LJFOvmDy9xUtIMd6gN2lmoDQDeGVAbALwdqgI4/vHb39+oCPj0T/2pCMltqIX/0z/7vv/3x9eqOR5//G3c9Wmrja/f9v2/P36Pr4CMq41r/O/P3+zOnjeU4EoKAO8GqA0A3g5NAbBkwOe/6OpeNv1NWPxurPf7rr7it4P4amPf//mcy22020jFwm+qjfRdoiwjwtTGUXWpBWoDgHcD1AYAbweqAOpVld/+/o/qht/+/s94BMWpTury7/7WtHMl5es39ZtY63EXz6iNQBycxZaz/vn8Qd2kQoHaAODdALUBwNuBKQDzqsG5EosFmGUmrHs7jDtC3N+kyEd3vFpt5HMbJ1AbALx/oDYAeDv4uY32J71Zkv8mpV5MefzmrcFHCoSXr9SGeOTXy9QGgf72tfs72LCzTuYGAPC2gNoA4O1g37dBbtTo37ehT3cyB9F9G/V0kup4Tm3YvyURF4m4ZqpqCWoDgPcP1AYAb4eiAP4s2/3jNynnI61++/q53JxhLcA0mfGk2mhy4fHHP2dRltpwJcJ9uQ0KrqQA8G6A2gDg7cCubshHgpKbLcozuNy3psmbRvd9l/dgxmqj/Szlfy9RG3YCI8htEPEBtQHA+wdqA4C3A1Eb5Cchv//5x1fx+09zASbvN/nnabVRidSG9SIV1hHkNgAA+75DbQDwlsi+J4UqACPN0C5/9K+kiP9U1fZLYjvUuzTob1kH79tQ93xAbQDwjoHaAODtEKsNdYPk5792covGtfs2TLWhxUF/RbdEA70u8xK14b9qTuWEAABvCagNAN4OndwGX2vdmzb25+/bED8hST2AXIqhKENz9UoK1AYA7xSoDQAAAADcC9QGAAAAAO4FagMAAAAA9wK1AQAAAIB7gdoAAAAAwL1AbQAAAADgXqA2AAAAAHAvUBsAAAAAuBeoDQAAAADcC9QGeJ+s82Natvrntkzl73V+WEzLdhxWmVf2Z/20Fjiv+7ZMtBpa/XngL8D1znrmk8V7B+XHa8eQAfCmgdoAbxWuGuQCYixR8apV1ca81g/qn6SI4+/yjVy6ygEXli7xYO/23PH6ThP6qG/zw+DzO7lXbahBsL7rjdd+y5AdkIH7/NduPD39t7//sz/0Bt05mLLOVEgdk2FaNqWl+2IOgLcB1AZ4qxDx0JMW3YVEqo3zBHevbH1Rgv3Vpeuvr+QVHv98Pt/o8c9n/qLUup6pD4N/38xAZ53EklwdTfs6ZMbLK/LJITvf4SLeSGda3hmO/qAHhizNXefWT65C1hl6A7wXoDbAW0WqjcW/QsJSEtZixNVG3f16e+VW9ehGeVumXPz/9unLx0//7H99pfva//743f1w393PhdUe81LNcFxZEAsz0wSJFXhMbdDe6+tdAwmpPT1e+01D9u/fj6ywSIm/c9CH1Ma2TFJf8ItHuD4E3gdQG+CtciW3IVYa9fm2TMdazK+XqBO27SzkJrXx19djx1yWH/r518/Wh992+2B5PaWm3Etj2B+l7SQjMPel0WW1Ie2r1MZxgH+nTXa89luG7L8/frfeTHtVbZRBH1EbKnnB1Aa5WwmAtw7UBnirqPs22Frjqo1EbqOTmffT/NOyPHkTgHi7+j1qg+Uw1NI0vkRdVRtM7ZwfyFt7jYLJaU9d+Xp6yL59+vLxt9/JjReHtfldF+atGDznJAY9PrgZ8jFNOnMhlRkSG+C9ALUB3ipGboMsT0/kNtrSc/7J1iG+KL38lsODf/9+fPjy+ON/P0JttKU5qzmuqY2zPpo6YNY0cwr0FoX9wnjJSvZnhuzbJ3b/pvhz3/dTN0i5YH7YBj118JGjmiYpKHAlBbxXoDbAW8W+kkLWjifVBsmWUDXjbqIfdKF7+ueUR5b+zx+hNupfWckxrjaO0vl9IvzHqev8mKbJvx1H7N4747XfMmTS4P/+/ZB3jNpXW5xLMCMHl6GTmkz8VkX9DcBbBWoDvFUu3rdhrVVMbZAvWq7kTFDTfTn55WX75GVq49wo33OXaEJt+J9pLvwmRRVa7sA4vjhK7A1rfrz2W4ZM6oB244V/jP/hbmdHOmpjF8pNqAskN8C7AWoDvFXUfRvy235uo6JyG/XjelvALFdmc+ki1Q/ecvjtE7kxsP3Y4dW/gM3ctzFTwyXWquu/SRHo1FNCbWTGa79lyMhvVvfzSSef/vnvj9/b1ZByccT8cHcG3TtYGkLkhqpOE79QgdgA7wOoDfBWuZLb6JVlrF5EyrTYzZeuM9lvLHuKYOn66yt9oBMVCt8+GQ/sMj8MPm897eU2qIxL3brxptSGOV77PUO27+yOzpph0uPoDe7QwcIQuufTsom7RPGLFPBugNoA7woSbPnFbHMhUUfr7a51bYHfhseOMB5e8fPztNpo4yDv36SXrowjhsdrx5AB8DaB2gAAxDx9kwoA4JcHagMAEAO1AQB4FqgNAAAAANwL1AYAAAAA7gVqAwAAAAD3ArUBAAAAgHuB2gAAAADAvUBtAAAAAOBeoDYAAAAAcC9QGwD8kpzP5Uw8SwMv4wAAPA3UBgC/APT1GuQV7uUrriXEuzhMxtTHv38/yJtBjFfXAgB+cqA2APiVOHMZtqBo+uMUE+LFJJcfKvrXV/KaU/piVQDALwLUBgC/AOtcX0tXXiR66gb5ErO9vdA9wHr3aOdlqo1vn5DeAOBXA2oDgF+BU1ScQsIWE0UpXMxtJNXGX18/fvj9z3+f7hEA4D0BtQHAr0ETGvNKdIOT26hq46n7NRj//fH7xw9fPv7293/XOwEAeKdAbQDwi0BzD0m1cQf//v3AfRsA/HJAbQDwq0B+fWLeJXqqjm2ZHvPq/zDlaSXy3x+/I8MBwC8G1AYAvwiHfjgkRZTbYD+OZd+tc+420A7fPuF6CgC/GlAbAPwSHMrhyFuEaoNLjG2ZHtOyZW4B9Q/59unL57/KH//+/fhA/gQA/BJAbQDwC1BUBvsNrHmRROQztmXKXkIJBMlfXz+Sp3tBagDw6wG1AcDPj7rv070R9PiiiRHxA9jX3bwBAPilgNoAAAAAwL1AbQAAAADgXqA2AAAAAHAvUBsAAAAAuBeoDQAAAADcC9QGAAAAAO4FagMAAAAA9wK1AQAAAIB7gdoAAAAAwL1AbQAAAADgXqA2AAAAAHAvUBsAAAAAuBeoDQAAAADcC9QGAAAAAO4FagMAAAAA9wK1AQAAAIB7gdoAAAAAwL1AbQAAAADgXqA2AAAAAHAvUBsAAAAAuBeoDQAAAADcC9QGAAAAAO4FagMAAAAA9wK1AQAAAIB7GVIbf339+OHLx0//lL//+fzhy8cPX7/Jf+/7vv/3x+/kSF3CP5/JwQAAAAD4eblJbRxHfvjy+S+7hG+fvnz88OXjh9///PfZHgAAAADgbXNNbfz79+PDIRfs/z7/tf/3x+8febaDlXAkP6A2AAAAgJ+frNo4Uhflv9/+/q99aF9J2ff//fnbl89//e+/P74GuqQUBQAAAICfldvu27AokkXfzwEAAACAn5an1IYHSYSQg8u1leO+DVxDAQAAAH4RLqqN//35W+/iiJUIefz2OzkSv0kBAAAAfgWeUhtHfoJcQznuHrXUxrdPXz5++PpN/CYFN20AAAAAPz8X1MaHLx9/+/p5SG3Uf6vsyOOP/93QKwAAAAC8HZJqg/7kdTS3cZ779dvOJUgpUz6TAwAAAAA/Fbfft/H1uGP0zGHwyyv//fE7chsAAADAz873uG/jn8/1/ozsr1oAAAAA8NPwve4SVSUAAAAA4BfhLrVBLrVAWwAAAAC/NCNq43g81+OP/3Xv2/jzU9Ui4ZG4SxQAAAD4+cmqjSoajkdy0dwG4cxtfP3z0+/QEAAAAADY933wSgoAAAAAwDBQGwAAAAC4F6gNAAAAANwL1AYAAAAA7gVqAwAAAAD3ArUBAAAAgHuB2gAAAADAvUBtAAAAAOBeoDYAAAAAcC9QGwAAAAC4F6gNAAAAANwL1AYAAAAA7gVqAwAAAAD3ArUBAAAAgHuB2gAAAADAvUBtAAAAAOBeoDYAAAAAcC9QGwAAAAC4F6gNAAAAANwL1AYAAAAA7gVqAwAAAAD3ArUBAAAAgHuB2gAAAADAvbxSbWzL9JiWbd/3fZ0fj3k1vu9xnrTO3UMM1vnxKC3w6yXnr/NjWrbjf+UZ7TD+l33Ytky6Yqe8VrPR/IR99HHzTIur45AwOGnEKssYsbv/JbVBYCJ6mF8aqcmylii/9IiZP2zsOlsO9AyxY1zz85fienfyDHm+Yd/TBoHlD3eLvu1PH0FvKBNF7Oss270t07ymzk1Z9uX+1quTj4E/J++YaM1q/qQQJ9ECbcdKOMZAGEwGflVNbHZydBR9rEJ6nlYs+ZwjdVeeF/noqNo42mUZjHtucm1RJTS10Z0F+uRTOtinWh5uzhLHiYfFU+S1kdMl1u5aoKF3+EdhUdQkxOGseFH+aTYupTZ2R4NmNBZtpRt85AC33rtBMFP3k5OtqzYSfs49TTiq/Mwt1z44KzZct3LURmRavVY9zlXdtEZm+mR2MrTuaqBgLZVlntHFKc4+X7V7pJGXMCeZZTnLZHdNtPNvsqi7XVSbHl9tJONqPgwGs06ZJ682mMoKWvKM2ijnX/OcOIDntHWGQbVRpou5ZvAmjfedqw0Xc7V7CBc1g+3xmR+Y2LodRoZpWZQItzsra5tXowX01Hh5EpZSDso+OOuxFNy2TI95oSYpYoIdY2j+Gs0cAzmh2h3NuSdVzjax6pzxIYY7WxyMogyF9JOntgpyDJ7ObRxbbNlQuqy0f9cSea32wYn1j65NI2pDGMSxgcxpqOzk6PRx4qZogfhTJC+aJYN/KPPqlbSzpr7E33L6ZV5LND67oINzyyneM9Hye7OWcXYw87aBY2TD4JG3OufHPPN+couNqI12rNelaVmYzefZsZWZt3+BEnibuY0jTin17GW/2YGdHk3LdiG3wR1J1t1dxc1q1Ie6ewN7FFbtOp8T3xcqXS2kDjpK9A3aNpvTPDN5QdNwqi4RRXR82Y2/TedPz4i+QM1uufiQRVuu/lCm0jayG1xtrHy8WO2DObxqJH6qVgCsXOdgNZPdvWGGeSEHHmEisKebJT2qs1bsxPTprFG8k+caT0skpRmzYtal1wwJVxvmlIobKA7M0d930p3JsUlajk+ak6hY+fKJJhxyKCLY7RhwjFwYLFqjTNhp2Wqz1QqQSY3VIx+0smDI+rmN5Ewc1gZvMrdRgpNWEVkNHzKY2ziKXoIBOL4UwX6aZ0PU8MyHsbsycozuGNHhkbNimoxdBQ+XhjGFI3q5DUOLneNVUgh1Zp3xhqf4jvNlj3v01EbkrYPzZ23BMpjn51dZtRG5Z+frZJ9YcM5qHafeM3xJocD+lmrDPtgYl1jkjOU2Wll8CT/VcY3idtfPrMcyOH0SEJsf7SNriez/1u44KbdG1Tnij6NWSomgsWe+dsjbgJcvJwo/7nUTzUgFmO0tVZkFxmojcIxUGGxrhJJWD7XXUlPUS2i1s1nO7KrasM54TNP8rBYgpqXtv+aMASNqo8WsJthkHDMs5mU+FFE6KkU46YQir5v60+va6j1N3I/PGUdOWLcwMSbXF72rYsOoU3vmfk8qIENtuEkHOgRk+nC1IVe6tV7BUAM629PaVxuhiUoDxJl6oq2zOs9inatwMuziqY1mI6qfBydc7aoRh1RLrlAX6qfVxv+dS8CNsGyYVxtxkcn+ZqdPP2vAurOwHshUfJkf7eOigIi3tCNVbkP9S6mNl/ibZSX6qTJ3U3t8KPhku2Oi9dtrnDeS25CH1C6NhMFZRNkHzR1b5lrFDw2o8DnFAM2c7IafkoX+kEPODlpvDc4kzMql7zirX6ld9UUG1AYNWU1uMIw1QxXhh4BtmTqdNk4S1efUhsp3tn616wssz3E6kdk7Gu9Us6x1nFtKThGrZ2LlZYW6Jiubk2J3VbWf2zC3NO1Y5+KNOnQnZSurMF20rmqnK85Z53a3TFQ7jepxK+tWdZH5rGri/l0lBqxzltupIQyQW21P5l/IbejmfafcRk4ZtI2ANoc1feJtID2SFFqEG91itNiQDrKm2nAN8GJ/00sv8e9920Tc8K9xHSctL59oObiLhB4yr6plgWNsyTAoq7RHiPkaTZtUcxyJknnd13kSl9KFr+z8Y946dpA6aaVJmkN5XBcEby+34a4+7BDiMkb39ac0VnkbvyiMxGFLLHpqvB4PchFPHLjO7EveONsxrU9NDc4aJLV8ri9WbmMVl62ahni0vDkR34HaWBZyUVeueGq7FG1YTQUq1i4rbjRjkrIt/7fnRHamuFtxX0D2CNRGuCJ2lsuNrVE/WG2YQ8aLSOc2on4PTJ8oycF2vsJhT2OR+SG+TMxIXqXYUlty65X+Jncf3vl8PePrkxyD1080dbS3N3wit8G+kWqjEwZlGLPcl86+80y25tem2GPPztV9VsFcVkd6qK/WeatngoxWfEl2I602pI30ImKYRPY+rzaEm1nBQ5PObZSU2tEe0dJtmeq9HULp2aX3chvOrNijD+NjzhY3L6nRlF3nrskilp8pexaVxaEGNu6HqxtBtd2eVyVBaMvtPnsjFc4aa7vI3MPR5TTymHsEJ2K9Sm2wkQrCqevnXGqcR/OkiV5Ao4P/r3ffuxNmXpvb2Onx0fwYmD7eNKRbW/n5OTR1n6riqlu/qyIt13HUxov8LQ58XEXR8oP17IaJphraVxvcjbNqw2pKMgzazXDNZQlUdZqzyzVMacykppLY2YbjlAKuyILSD0M8PaViFFm1oReNdZbqXvZTt9Pe7hgKgxXe2fOxCkO1oaqkZjY1txNTHIexPu7OisxoOomVmrKjjeOBjwUG2bOWuVnpPRpcOjjRpFXANhAC4ST087YBzNA62aqzwrbV0CNonTfb8LG+ute0NRSxirMqyU9yfi63XboNoj3mVsA7WJTpK/lc0Fn7iXC2hKjYLCVBdvr4s1PkNk6naweTxU0a2g0GRmSgP2NsVzFZ00b8rRyQsHoQ+NrGhG/4y5ciepAOvXii7dItg9halIAtY/XZsWPkwyC1eUJtGL3S0ySV2/DPfUip0Sk9CrmOK9V65QI8FbvRq3HPkFMb2nF21q1oh0Z7HuuGUsoRXOd679TTamP1fjYjVua6AArHbN33DBHmNqxl02zDcMeYyVTmprtC0B0V3/p6+oJsRLWQlp/Yi2T5xpYmZ5heLDu3xpxhrV6FDoKgNfnoKNp7TXqkUXhs2Oy3WT+3Vm4SFLhXiYPlXqmzfL1MbZR/m0kG+oHg1Lzcy3LTJ5yGpGVSjlc3qTtJ4yZfawyMJYp2jP+p9r4dfyMzux/8ArUhzg9sY6mN1000uXAaamMmVztSG7CkY+TCoIxW0Yhzr/NzjLqbezCicpdydMvSwEHpQSedMpq1t2UiDxrRI/Y02dxGgBh30bzu7Sv09En8si/Y+c76RiGbYLtof0sGUKrieirrZE9tGBrcSLQkd/m8LdU/RL3HNF8cDyMT6QwUQYetTvk6oio7FXx4/yxtysOs/O78S7iIthpTEe7qWWtxjmjlOgYMZ2G8s6/BOenn35FYbcRI+bbv67qKTT93LDcytDLS06eXGrKM2eSHntF1a6cbTu3h+Y70YJrmSPrbQG4jHB3ZM0fwsXzb46UTzTSgJYybS3Rn0IBjeAutDIPq225ug6Q1as2G4uqrjXJ2UXjOLaqd5SXCHSCZTdNzJO+GPV6gNgD4teiJDQAAeEO8jZAFtQEAAACAe4HaAAAAAMC9QG0AAAAA4F6gNgAAAABwL1AbAAAAALgXqA0AAAAA3AvUBgAAAADuBWoDAAAAuIbx9LD0469/LQbURvdpgvFz63c9BvVR1/UhZvYLHown2KknevIHJqfGOn5eXatOHzfPtIbSaN2d+rX/VLqodeZB5sPTVY/Eg5LJ2MkX1OtKohqyJJ6MmhyizGsq4nbEz7NmleUaGY2ffDRfXF4piflI2FLrAdGdPuQNXs/mzj3uvXkXCh8rrR+7bT4bWzr9HpupPSzTa1Q2MrhdemKpYc9R1aaXj4IXAWeV7yDojVVo/9YTdz6zoD9WdY9ODOGjLeuyfcV9fcUSvkUk7khabZBPDQ+r783Qa+J43POjiHrk+2KZ+Z5Hgd2T28ipDfY+j2n5f0av2xuCabns0cD8gcnlwdnPN5ZSKySOVcZdvARBiaZuzBBfkQ75/TiOU9NRF9ssVl730Hme7xmmM68qiOi9m4A+7d2MXeKwWmiLfr1R5q6wbbJP6lHq4bOKw895GBFKryEbrd+KIc9LPs7+YVXvttkvtCnk8hqmIe+l/ZqmnN7oKDf58g73WPkk6/o+cXq26qayhPWyEBdn/r1KbWjr8waJ+HnOpmmO3u5L3u7Rd6ZdburIe29UoM1WnSewozBMcQy/W+du0FUbW+Bdrt4wtqGr9ZlylGlZ9BPk62piLiH5uOfYyPo4v8l5Da9WG5ldAXnfod7Y7doGXG0Y70KvUtB6WUOPzPhZasNoK3/9xkRfNF4dT4conSTRHc/0wn3C/YOFgfI6An1GldXkz6v+N6I2yErZ3aFs5xvjYuuEi7Ru1tnY4jSb9bI6r8jDtKVNbFQ7uY1Wa7+ljj9r382qjcxebNB7SVnNHilhYg/k0cxusub0iNYDtvaayRBvNRfmvKoaXqc25MDY34mgk6wkyPxISVwdZ1u0YusWeJkxtTHN3gZAlReEB/4m3wgtWeUn0vepr3u5jWBNHBzi3QkGxqxWjXn5UJ78wNwGCe52IHs8Hlpc2GpNvKBQ+6nruYmNnsrXmudURyYr1f9Trw4yvKi/5aQtclLEHSHLchtbebEt3wySVB5b5i5JjnipICkrqTacyZ5IlJqoFc9adc/PQrVhVm5YJ5vb4Fqut8mIN22pAx+832b+lB8rPST0XlK/I59NfP+SI7ct82S8rookNWsQsfb/9IOc2khFBqM3Hc/tIUef/s2+k/GTmNKfd0FD4yZ7Z7ScQrLqPJ2A2HLMZZGItWk7kb+tsisOwwO2ZZ7n6UxgnMaYlsW4OlPbRmONqEOOqcKPe6k0qNhlim1W0h7XSaqNwYxuOjj6VZGQLUKeKr2loPx6XBPaw+elLLSm7qVaWeNVdpetbOpGlEjZO3tn2yjzQtVGtaKMFJ6xLkiOV+c2snMp66pUWZFwbauNrPeXQhY/a8Ez2Wm1kebFuY2s99ZySQColxUC33F2geULPgXneX5M8zxbTagKSuvVaZ4nM8l/vErdjbOpyGARu3SPYPSjdeAcn6TjpHIbxX/FpppYYCvvah+oOo/qbvugtWFbpnNx39hLhbO5jbL5GmmH+Ia6RNu4iPTaOpe7/UqLndCgaujHHX8f7TiwCFpNsKtNxmt5IrcRzLtUbsMrk16C87aWA8o0PszPCYicqqU2upFH7w5l85t3PpebNJtybAeF4lcbgHhPctHxmMU4PHjxesXc9Y2gv1CfNJuus15ZyEGkTenchu+aGZuts9hRBGojs127pgTdkltIz3mvNgn3Z1etHofpaLEt02Oe1Ua+jKPMVQw4a5BSEh3uRwbLfiRqcwOlCdRG+NWx7DtzTvpJPrdBxt05dhmr+hlL2Dq5ZkqjpZlmc+kEJwm76rTdJZ6cTdpB+inHfT3lEHUMK7eRsUkv7lFj5ZxPpQffitowt0jKLS7lNo6YFGV4z0qs3IZKkBLJEjUip4uY+7lN9HZo6gjiB34AiQKVnnVWbNyWudyNZHhQfwedd9eghXr7q9SGDM2kL44RjJbJ9ZrezTMt27Zt5bKzDlfCjatlIi8whn4906fzGges1jfnohxz1O6CRZurvFyWT+eKXTLfxKa8V2tl/YnlTGTApVAUauzYtq5lb+gnmVfVN9bLdZ4mkk2J1EZ2x2TtwKmpRpfZaxGhc+pAUeIrMim83MZY1WlY2rcUblu0Ns5aKfWXXG00tzJ6uOtCjTpUJk61ryxHgVJNhNpe3Osd7NS7vE21odZ0HYD2fX8itxFf8qBhWhxfGuONu1NsEOwTuQ13z2bWaqZkyIddRa33lN4p55dz3XPUlB+rLMwcGemWAZ5RG7sV40QTH/PKvY7tUKZymUnoUyJBudWpyjg+oQv9ebq+ksBrZi0X7TUsmQzQ1FKmR1C1QSenVG61KOJ7tumj3AYr3e1CxnnoMdY46wlPxoMWfg5ozVMzucE1y3mVa1nab9adZSUZGQwTmBuyPLLBRiKpe2p3l+VvB2UHaXAdF1MAACAASURBVDgIjs1XncUItVp8SNM4o2aKjPqPbZmOq20qltQ/Q7XhGtNT17t2m9QSH8a93qA+HvLKZC2j7XvekNrQg6DSCf0O95wvtylUhZXTvIIHTSic4exqa1sN80tYbn+zdGknwyaXtbYdcXZZ6m1HbXko840unacXUw1DvfmK7zF9ZoxiR21ERmDRhqax1JGkbi9XUvIRfEmeZ++3ct1p3AaUbfwM1+dDX/+SBqeWMnzygtowpBw5NaM2dGcNS8XLrDxCjx9t5mT9OH7nF0aalmpyg14+q0tL28jFy4rXbuuM1nzaketqo0neVlIcOHfHE8iXbDRvym10q05CdpH2jkJMnlxu47DhRO7fOH3B+rWYaIr551mm6rLcf5Pd8NWlPB/37Ca0cuiCSX5qdq7fd0mNfURtqG7JqaQP2Dbz3yFP5jbUwb1ivUZIXX1MdRK9yObJLbkbr4Nw5JdrTnznxKY2zh4s83TcQ92WnuJyfFPWPvGXDv8bJ7ehG8lX8K7a8KaDoYSVCtBRQaVaztWLRdFejHZyG2QhtBdl8ukRGNat7YiVRDC1ziW1YQi9ldxuMqA2fO/tqA25WtQP1TrHQiZ3UE+dkGbzDVzVJyxmj6kNOdjNax71x4Tc6UwzxBNHzoSaiOSeYZWaWfLbFrkEMDY13AWeBp16NVnG5DG1ERnoMO1WF0ZRhCE0/dzGPLdUbhvlrf4QRGc3fbfglmjyhw+7s1bSKsn6sSQukmXinvzKD1e1U5u8GnBFGybJqg1jIuqOkvkuFo9tneVHfkWWv5ieTRrGG/NsMsg9n6phNiPtIZedGVH97lci5pqzSywSpIVCFNM9lOo180ijgx1Xj3Z1xpJn9Vgu9tH912Z9dYlONL9FHWPPxgrzPHNnAesQpw/rNkhatBVIuFQxcxuqHNk8thC2D0VgIw4gJdoT3huojbp0OqexfAu7U1TUt+qOiCqt9im14c0cGzpHRJgztrmegfzZYe2JWaGR4PA8gXaunR+F9LbNIM+TichUPWAHR7N4BeVyG7TotV0cbZPClOhsiYk6czjvZHl3685wjN2vxb3dUxtryxTemMRwyOc2Ks2fzL50uqGklP4+mduoo88VTi5qxLLGLWhbjpvlrU2y0Sl7d8hqDueo1Rrqlencxq6PJ63wxUscZbz1z2uZWalTsDjM2g3z5tIv2zfxBtsN4qQBXdVPQ/TZYrrYukatYS/ODkWq0yqwnm3mNs7Dw8hZbJ32XrttnvjrTM060toytimqHSb/Sm47LZHbuBQZWPMSC1N3/fZ1mXv2YILB6idfl4nwC2CDNZTbyNlBttleQpXaMNepjd5iTAsztCI5rL+ctMnf74A2X1xsJu5lV5DkCYPDkuSC2gBg3/crsQIAgIlz8u7tQNb9992R7wTUBgAAAADuBWoDAAAAAPcCtQEAAACAe4HaAAAAAMC9QG0AAAAA4F6gNgAAAABwL1AbAAAAALgXqA0AAAAA3MuY2gifsuc9U/ZVTz5pD/6Ln3YdnXn1gOBJzHE5ZvvMx7jxZzK35zZaT0qNLO5VGtUdliof1uw9ajhqkd+y/MOdn3kcfbfX9I0RhXm2zmKN4q133kwQd0t3z51lrOxk1VaFiUmzkZdoGI+gTDh5oh30uxj7DQmqtfSI3mCPkR6dyEvDMDP6egpdkdMy70matdq43pHhlt9kpuyzb5lQpaWXG8tJokfq+8+LjzFfIeDWLOwRuMVAxEjVLp4SbJ3z5Eo+rDbYs4zZA4GtgO1wpdHEjwK1wesng8GqzDyb2Hzgt3mi9yDk3XtanrfmEiMKtaHOD43YURudZ4YPPLzZMwKHvOaDvvTDQIYq47HS14ifWig92fAzs0n7Op/vkfCgz13vHSQk7fkWsXq64TGZqp9UG6UI59HfpbjMhPYVexxgnR6wB7LL7gRNGl3V7eYHoxO/BEWZznU2epYx1ez5wL1XKuP4GdjWJBwbbv1KEmNgUlxc1vKa1nppgP9mgvbOI13uQGzJdyJeAEjh+YjBKrC+o3tb8YqMUuj3Uhv557Bf3t316p+WLWiGSnsw6Rc0aiMvJvOqdhvsZh/m1ZjM0eKTUhvdtlJbed9lxy8wGzdJ4t0TwhaOZm1dVIPrxNwkuf2HbH9pGxtk9jKVZCAJjjQ1+77v27bI96DkCnQ67UsTLyXiBV4xBp6TZyKGPT8dtZGNQHGYcHvcJz06LVq7VHeir/V4MrdBjbWzOWq+cUUXIPMc2eG2X7iy6k+dNe653EZiZ2Rn54qBagu8V8mwRVw1diC2pKm7T7tE9qqXnE+K0p33wdB33vzo3IZcVYgZdQfYwtjbjWdqNlcoI7fB1Yb2BbE5VZkuPQXppNXuaGRQ1/KybFpXOyKT22BZ/JZuMEyYzEOoupVGyLy1yTRjQm1s9U3LZs9Vp6xOkjEf9aTnchum2iDJVS/e8K1Gb2RYe8IDR6pO5TayLjTPeScfWD771b9wvK/mNmgBuWFUcGNd7nV0BcBQG2ZOKbXpGIlp5RjaEPZqQr5YvHCse9vX2qh6YNu5BmrDW7LU5y/PbZB+2VI2P5zeTiJQG3RF+2G5jdKcyDtro9rf26Yuc1xLbISveGwV8iP03mltb2D32sIEbHsPoqU1uCtzOTTJo021YW5tjdxGd1XhFSWvpNQ/zIjUzW0Y/nBsaZTaID2Lt57c0WtPqOdc2QxxyUhdVcROZtpAbZwjnPTlfm6jWIRGQ1Yhj4n5qlNqwzrpMU2zPGjEyb0URf3DTOmEJxr+VrxE2O3FuY386LAjafSQJiCK0ex1pk2Gpe3cBj3p3NTPs6zdn7W1kmi4eUPW47qpvUHw8nlOozuk1QZZT+keXquNOjYy1LAQzi4R677I1FKGaVlmUixxM3ORSPrkwF7iMS9stv1ItZEgl+4cm+6mnwfHstyG+tdh0AzHvIyb7aqN4gRW4t0x0rx0rqSI1c9bdslMcAy0RKNUN0TZceQi3M5tkNrnubP+8bh75sjmedKzO806d4a9l9tQu6ND+1YN4luyjki/brobdQ8crHpbpmNpcbpv+vS0rMs0Lau8qXDEyY9/ri1S8jgohjitNoyUmqE25OA/GyZFfzsu1CzCe8Y3D6JJntqwqjvXSq42/EWlWU9u3QPM3MbuD7fx51b8h37+8kQW2wsYI2JkLHhP7NyGNSbmGA3EFqvVGrbdtYxqDkq6alfWChVmDdR3VRuRi3qrBevIFUp4JUubX7mpNrzZb2Ie4rbfbZeOq60VZMJmchtl0tJMxLRsXmfOFd3pJ62QBg7bB5uQoFNSSt5pmlqXXbVRLNSZAes8LYsht05LXvOkXG6j1iPUBhtkFmpflttgBca5jZGqaXDVrm01q4Wapm3qlyNOXv7JRbZefYxiNSO5jZxQvu5DY6NDXSb03Ti3oea6mBlGFWJ2O10uNpWJjjPAJIdbjQwb57BrniBLQ9WGtUhrRdRax/WTbKdszGZcbh6KLSrN4h3I6jyjnto67yM+KdtgfEnn0bGZLYmwCyHPZFht2JUJM79+rts5BPGdqlytESIV5swlZxisPVKc22AFcrWh1DBJVjC1oXuhttyiQXLrI7+nMShSG2xykcrYJqn0ZV7OT221cTarubrjGLQOecFgpbnDITK5RB0GSLA0q6VRKirxtbmNfNWrvtIupooYcTOmibUs7eRGJFTqzSrJ1CKjuY1453gtYF4YndJMQxYknJK7vp8KcUaIKgGaWZhX2oMyIFbF+eFmR8otwjR58dmntyckjKmNw+pUZbQga/gls8fxtzFpcr1hw6/3Uaxe5cd18Xkut+EYi3+31lwZXUnazvMy19WGdDA/O/OgV4Mu4uYQhFX5JKzupueP9kFPbYQxLKE2dvnhdmaplevxOcz2I80j3R3izr509EZmbjTta9xWXg45QghTwdby5oUAnSYwJ4bez43EIWqWOmHozr2WqtYwvsTRqz9cNLq7E9ajYHMn1v/R3XO3aumzTfbxE8XuV1lIb4hiJ7em2jGiqxxXOeNCtSEI1IbP02pjILdBcaOk0WvzPC3cRDMstceqMAb9Qa4Zk5sEU53qqY2WJ3F5aW7DWhX0TFzk76fNVPDWkqllL3g+g0faMBVbHKlMq5IWMWOnpzY6PlkON1MkZwnTRGcIVzqPa5GXc11tmFpXHv1ogsyMiunJb6/q4rudeFO12yJ8f1BtyG7y1rJIGM9MNnhiURblruIuLqIqhZygtei1WM90tcY7uY0zge6Y5dytbcvj8VCjm1Qb/Egdatf5nNpMcHW8XoVTURGvsUyvadnqzcylErJBFNdvhtXG2SgiJZnTt0jj7dFrGswYuWG1wXZ3vt3sSPXwd/CyNrEERg2SBb0gt1G/pzvw7sLn+Q9vRnd0zCjRc91AbZDJSKQBcwbtnEaGhV0KIU0uQnOTvxvLxzRnibWmbH+/441AYnZbFuQbUD6Gp1WsTSj1FrZS8WYkY4saXWMXIPXCOlu2MXVmP2LI3IQw1rZM8oY6uodUGusaY2qDtONBpZCcRqtMORlqg3QmIZrY/kjTtv3cxtzC0iNMJ9e7umAyNM+TR/prQMsHeCfoONHCgp1PWr0bQ/nSQicK19N+JoSZRS7G6jDLZL1a1Od0n72SO+DaDsb2GGdjxAfp/G0xL7QdKJshhAC1Ol3yLc6diJUBFe0tK/k8J5OVmaoNm5xjU59e4ldlR+4hJ0+Okak+htSGPpEszMxanQ2O4z/nebnROXxoGY/OnsXEim2MnGN00WvdHGElLnur86aG24hmdHY5DSjV5nIb3lfBKbqRMnjLuUmEqZw2THjp3V8UW6K5T5tjaWa3O3mftIKm3uBaaoPEkmgMs+TVBolr9rL0eNSnRHDd7U3wO3IbqlUyKJv7LX5IR/zwAG86VJ3obBaWpsi0Qf0j3AO1YFAbQP4MbXicQLM8QmpY9tDVu99fzG20ptEem/tsYy9utMbafrFPLVPVFqgarKknWlq9yw/EVhF6JrEfCwbI9TOqmq4mMmDSFjkh3PbBlJPTrEMIz9zz9pOTidc2xUnsx7yIukv5Qjud1Wnbf/aR0WlF9PfwCWwnJ9tYcpj0uLarMQzcCnfiup/KMmKachc9ZdWc1cPbwRsdT23IgM7OFw0kRjh1krlFFR0kt7OnY0t3mekEYrJDGfBJf8kW/RYCxJBIzyiOS7kNAN4g7mIBQAL4z1vmFxkdUwkzPfGOrQC1AQAAAIB7gdoAAAAAwL1AbQAAAADgXqA2AAAAAHAvUBsAAAAAuBeoDQAAAADcC9QGAAAAAO4FagMAAAAA9zKiNtoTL72nT8tn/tHvuo8nj55WaTYk/13iQZmdx6aoZ8tYrY0f6pbsHAAAAPCzMaA2yOOIjSfkikfb2o+A75X/ArUx9mzz88vH+TaizluTWqV2gUE3c2+DAQAAAH5G8mrDfO7/uUo3tWG9yEedGb1fzUoHZF450HtRSPDGI/EQe/lergTydQ3RQQAAAMCvRlptsJcB+bkN/d4mmYhwUxhxbmM73nJe/m2+DY2pEvGKIfvNRIZGMd9flQO5DQAAAMBgILextTU9rzamSb6C8KLaUC/3bS/8XTZ51rG2e6mGaZrI2yLtPEnJehiHlHSNfj0wchsAAACAQVJt+Ncy2lt3ndzGLvb8+n3SITRZUMohd5A4rxoWK/v1zIJ+f3qgNmQr3vPr+gAAAICXceEXsL3chiUWtmUiNzc4EkGpi1rfgC7ZlunxmCbVRPl3AkcU2WojVyTkBwAAgF+QJ+8Sfcxr774Ncv60bKbaONbu44Duz1dqO9x7LsqlEJVPsQm/HMptBL+VSf0qBwAAAPgpGVMb5TpG+1FJXm3s9ofbMj1Eue7yf+Qtlu2oWP9idZ3rl6pOT1Csc9jeofs24iwM1AYAAIBflBeojUJObdCT1pkuwurXJeJXJe2DVobxA5IhtbHO6pld/OTx+zbqRaOz98ZjPPyrRgAAAMBPyFW1scxyvayXQ+INfVme9SKsfpNypj24JmFNoQf6DzL11IaRijifH+JeHFGF04PJdZzzq/Yv8kUpAz+KBQAA8IvwgrtE26ItH2vOni7avaLwomeJ0vRDdE2DXkIRkJwM1VhNkOzkrlD6BDKhLuR1nnIAchsAAAB+KfBWNgAAAADcC9QGAAAAAO4FagMAAAAA9wK1AQAAAIB7gdoAAAAAwL1AbQAAAADgXqA2AAAAAHAvUBsAAAAAuBeoDQAAAADcC9QGAAAAAO4FagMAAAAA9wK1AQAAAIB7gdoAAAAAwL1AbQAAAADgXqA2AAAAAHAvUBsAAAAAuBeoDQAAAADcC9QGAAAAAO4FagMAAAAA9wK1AQAAAIB7gdoAAAAAwL1AbQAAAADgXqA2AAAAAHAvI2pjW6Zp2aw/TNb5Ma/14PrvW9iW6XE2Z50fuq5tmR49SGNHulmKb3XK3hJDkEOmZRPfrHO3jUEt+77Oj0Rbw05Yo5RoVq3W6GppaWsdHQzS4ETzzbHNNZG1sf7b9AteQ/UA24emZSNO4vpZ6xnvJnHcFLUC4TeszU86gjOMvXI7k9xzr5B37JNP0DOV2SrdzeRhA6gS1/lhGygaIHFCHDxTzeCljUZvsO/7WBC7yFhug8TG7682Dge2iuEhezSA6wbmuknOSamN7gTshjYaKUyxocMNt1gwDtsyPabJinIj8SmI7MqWxcqmXdwax1fSo3x6EltkeGl8UE8p0V+++JKzzvXf62zUPc+B9i2ukJ7whkWuTAFR5IvVRl/uGyX/vD4Z4fc6paofUYx4Sm1UWyW80zVJNOOcJspTOl0YWqSujh3352GLiunw5No4Euc7xeSC2FWGr6RsyzSve8adHLVxVW8WF7ciz0M78Fgdani63RxXG+Jcc9vBljc1kUtB8ogzbKoTTpNxIWZ6YXU0Y6fWxJJlerXXMRujZ5auqBYmDNvHn1hSabA4Oa/aWU21YfZRQA7btmV2mjYe2w4L+D2sDQ5MNVBlbj2bli01NnSzNDzpf1afvN5rt4ukmwwjEF5XG+tcirK9mE2UdG7jOCt0u/P72Pyy0F70Jk28shw1Y5wFjRmVnu4niPKliX5c3d3ngth1Lt+3cU1tHDnCZbsyvI8j9alUgZtq5dos9OZoGXY2XRnmhRx4tN48bA3q4o0pVmS+Pq+y/W0OzwtXes6OKUgN1XEUthYH0s71IhxpRzA2T18N8AtRW9uU2tBtVaV73WkZi6P0jiuUNpppZ74DiRPT10jlNgyfM3ywTsUxNfRz+mSPTq/pYbHzWHsP69x8d871cZ0fj3l+XW5DHedeRToaYNpkMHrLU58e0xekEp+assk4P1TeLc6fVhupBZZF59bmaZ6nc0m82uAyIFpFuCWOSM7MDlFafTy30SIcX8KeVRvTJA1L1MbKLxwYMfbRxssK4SwuF6M6QcHIvhwNYNs14s18aVCGrXU6i587vqFrNPu5asPwg2lZ+Aq11ZtvSkd329Z1NKYpGwUSyWpaW12miA9dTSJGtV9RG7KterZYiuon9MmYRK9Vq6xumgUzY11pXzMPCyhPopJe5xhRbSQ3lzrB0jo4EL1JhU/35bnkxNOpjeIvUZzPFJEJYk+0cn9pbmOtFwLM3MbjGf3W5l8bGzmxDRO7QlkyoI695GpObZhQtbEEgX5xcxu7DsAk/8i0lIjSPCGoQ7ie8WcvPHOxFh5/t2XZ00SeSZpBzfDqj20QEEt91FkdC9m9IyepsOhvC5b56Gssaj2ruvc10PN663+al+Y21LnbtpG/eKE/i09ms58k6dXvteht2EBPJ11UG800Zxl2fuPYUuaYl+MGFdXv0vQj1K9bFc/S22prgqnuRW9VzGWUZBo68RXpsk6cHymnE8R+jNowBslNTu9PhL0TOv0cKdhzG9uCnQYG3bw3t1GLYLPDW6tIK86DjyOZRit5yFaZ6LH+5ChQ7+h937P3kdsyTcuqDccjX7Rj8trmjrdX2Do/5qX9IGjpqw2+MCbURrQtGIv1bMPh2GHflmVlR78gRrw0t+EXJotefm6fdMjPxPAyhSHAiLgyR2EoJIt5MJcLG4ctzypIif2Yv87zytKMZB85TWIJX+fHNK/s755rh9HbP2aMy1rjhSVEcX6wnLeY21jbpdjaghvVhp4pqt/uZsk4YNeNshsYdVOpDX8iD+U2RB/oP+Y5ym2UhpAQQ6LW0djezt3b0VIzkcySOQy6haXj0oZH35zNkGiJbFyY2Ng9J9jXeV5p4zb2u5OJ3cBzFtH+r9j/Wm6Dqw3nOKo2Q7TjtRqKB6hpmCad2+hgL5Aqm+G376fyyTRBr1PQvQ1xTCVpBhpLHW2ep77aSC5OLcX0mOaZKg8pClRKYl7ZvZaKOHqTgq4vos8LhRc0gvlLIs6H5by93AabDNVSJYb01cZo/Otnv8QRlrHH1UbczTtzG6RmZtXwSopsO1cb5+Zgvq42jnijd5RyQ1XzBaT91XpkdZ9nMSLRPlKmtOJjOweoQChiHS+B2G0tOXg9DKO5DWvUgjZbU2A271TQDRkhn4fQGygvt6H+vW10Bj+jNt6XT6bpypatXFWodjUW97NDXlbtigpt5Tp3vPMsXOQ9rbAalcR88hWpOQMFvegtv7lmh9eMOPeja+fn43xYzhvLbXiW0R6wzsUp2f2ybrMjRa8zjdwXzZmmzvFnhzq+282BhE1b+uMJuM6PI7lLi62nTeyqf6w22kZNiCAZiaWF3Mju2ENleEssKXuhtiaQnEtpzOxkeGXkklUlNpF5tVHWJ5HTtW5Vax7dkvEtF2FN1PqbpCYe82rDEJ1Oz2vgaz7ZCvMTFR0jbuSnY1v/Z2TRfEioGPPUn8on00RldTJK/LR6sLr25LlFrupp2dbelRQH4SWeJBUOLOcr0xHmZqsXvckn/iLqW2NVN9OMnC6zQMQnW2OiP7mojuJ88eWEb2aD2HWG1MbqXytrPsCng4yyu7sQOMHK2L4xb6KnySghEqeBNGOVp7o5rDbKv/3tYGbDbpjYv2ldens8RTr7yB7cRZmOe9TcHlHPaoyye8PMdiQ8hieWHs1vW/uZ7mChja1cLRV1PLGrayeqNizsaMJsQ5oshBGzez0jmFfdZaUtBOssPxoqMeCZ3Eai7Lfjk3mifZfamus0Hck8SNUVSZPSD1f2Vcc/pMU1tSEsqtWGWEnmlRRrphPECpGM3soiQ3MkZc1gQvDz6WTOqQ3uIX6cb6PVc8+BIHadtNqwViotLFgoVKcHA3stsyeWXXF+fFlPnE62KP1uWpUbaKm1rsfTkhcjsmU2gFFug7XnWth3Y1yqWXaZNEVwHEkrigo/Ez0J+NrbswCJavQo0pTp/FWCmOvWtbjzxyYJS7GAHOU26KJCU1tqrLZ2m772W9KY/HpNMgG+8ZwSh9QGN3Z42Pv2ySv4W+p+zAk244ncRjcIV5fjwfU0mZNpEhZ05JJMKdaCRebJ6V0ZxWT0znBlSXrd6XHJWW2bzG2sA0HsOsNXUu7ivqF5N6RzGwA8CVwJaOAVlLcsNt7nML0ZtQEAAACAnxSoDQAAAADcC9QGAAAAAO4FagMAAAAA9wK1AQAAAIB7gdoAAAAAwL1AbQAAAADgXqA2AAAAAHAvabURvZTFfCuJPlo/lCR5WL4l6tUFBsYjz/3WqLdnuOVZZfgPNBbfkCfMOo80bA/Uc57jyJ572XvSXPQ6BHJIB/I+HKt/8yotmnQUWVBQT7fJpn91Hl8ZPVRSnFoKk4++l4/1pI9nDp/Qt5H3bDkmF4/A7ZW4p4YbAABuZSC34T+ZmHyTeaRw56U6qVUlXKKC71kwTzzKVz+Snj9n31h85jl4urD5oiFlwfLeBiGMoqcAE/nSUxvR44/Zw/dzC1SgNrQMytm8fklf1bFtYtFUzyS2ns6cUBv8A642eHnSsq1DodoQY6me3Uwtpd9RYrWCeoiyqqgimJKve7UHAADEDF1JoS+YiFerdNLC2P0nljl3Pc0851+/6qCzktNn+W/tDSfmWway73ASeuJoOF0XaGLgWE/EGyp0ZUaxpoXslYa+naO2KH6hBzuwo2GsN8n5Ns/4GO85VRt1wGpDvfL4e4jYulzelSLPUAmpYDWX384raxt7cVJTG0oLGW9+iNQGGZ7jVU6TfsOE9UYJAAC4j5fct2HuWTsLhb/S8HNl6jgu135FGTmkqA3xVjPZA0vOeH1ir7Op79zym8nWRCZ8jNc5itOtKy4KX20QRUFfcmS+WpGbkg+c9QafjmbUb5LL2NzoqVhLqb7y1YZpHnvFzeY2uFk6uQ0j2dNXG9oBtHQiaoN8rDU/GeLVe3MiAADcR1Zt8FfJiberXr5vwzx/6J0zYqGkS6SxUXfUxjTJBMt5Ouu1vrKxi4VtyrwEczWTI8ZSW3eulggR59riRi9Udlu879iYtAyF3ibXZbP1rHxa1IJUG67Nc91hr1MnGsxQG4Mv7Vznx7z4WQt+T1BWbbDbfwy1seg2Tssy2y7Sy204NLtCaQAAvjtDuY0WRfkaeCW3IdLc5Iu02hCXFti5g7kNWS1VS3TddNe9dT4y73Ld9bpP7v+ofZkm493I6saHR31hvXe5REs96zYRvsDq8uQwyPVVHVhaevzd9Fod5AGb1xprruhQDWbttVnp3EZou+Bbcpi4TSRUG8VzaO6inuCLhXaJqpzhqg3L0+TnzPzepAQAgHu4qDZ4kLyY2ygHtTsEguVZl2V9nc5tWLWQawS0qWRpDHIbVgddmtaQtwoo85xrxnGDgZHlMFP2+oYObmF7NeU3KK5qZ+2ca+c2qqHp1ZoRmz/KxZHjX9u2lbtmjFsQqijhIoa6YZAyIYNRMwqd21BqdXEm5pSgS5Ve5Z+u2iBNHlAb88x7ag2wf4ENAABu57LaaDcl0oDp7f/teH2UZ250dXW0XmvR46cMXUlptfD9OT8gzG3wopxD9WV3VrO4ixuwjAAAIABJREFU3K6upOhSDfOcay/THHxBi9ZHffNnPYNc9LeTINrk9FBflkmbrzO5RZNnX6oOIn0nGa6VCoVqwvO+Xn3pxrCNbFvwWVJcrvO80s632zPO/hApSJJB6/yY50BtkAGrV5OaaqN5uQioDwDA9+IJtdEwNlNVitAYaRz0mOe5Rcme2ujmuZ+4kuL29EJuw1mx2m0J9rJX1li6MedqI7x8tdN9/k7yBupEV6pptaEvV8lP6I6dlFNr38ovmQZszqqiwsq63HIICjpe0zzn7/L1LsbtbAE3lmjeYE/omh+t80M0kiT6pnkmP7GhSRAxk0huo8oVL4Nh5h9xDQUA8L0YURsqYLXFgAa4zl1++n6Fs4QlUBviRgOXKOTv9fOu2jAvEwm1UW/s4+tuV23wrvNckSxtTG2ss63ExJEjasMpkl//KONPB4kkoOqimbe5NeDmtTM1OKdRrZ2+vQ77uQ0yPt3cxmGQdav5i+ge4DLQQs2Q6zmk1rXel6LvRuFqw0w8kSrlF0ospWYYAABcIq02jnWHbSLdo8Saat5twHLj7QtLmpyh0lxudP3dA9z7NsRR5cIBfyZDqvbwSop1keH4eqLXBI7Mf328x2Q9/kGsxcHtGErV2NhXUmJrVgHGtWH9qUjboudsrj52l0GpFNqizRZycTXG8TLR71M/HD2J1YYlybjR1eUw0Uh2eYXlppiQaz4psl/VwPOs/EAnpwx7i8s5AADwarJqg+WX3cXqYf6WL47uRhX8A/Zz2+BC9BktzcLJaW5Wn3WshHP/ngmjQ6nchr6sru92sE3l5TbYzph86xg8n9u4NpC6g/Tug67NRfMDxcOsLDQVaT3JGXRyG2v9bQ69IuVdlDvrd1WZut6m1n1pYr76KwlTBRBRnkTHaemp9blnb+Q2AAA3M3TfBgAAAADAMFAbAAAAALgXqA0AAAAA3AvUBgAAAADuBWoDAAAAAPcCtQEAAACAe4HaAAAAAMC9QG0AAAAA4F6gNgAAAABwL1AbAAAAALgXqA0AAAAA3AvUBgAAAADuBWoDAAAAAPcCtQEAAACAe4HaAAAAAMC9QG0AAAAA4F6gNgAAAABwL1AbAAAAALgXqA0AAAAA3AvUBgAAAADuBWoDAAAAAPcCtQEAAACAe4HaAAAAAMC95NXGtkyPkGnZ6oHzOtaMda6nx0elSjZLW2d2buYYxbZMQTO3ZSplrnNgorQlrTYe1hUNITVb5dc+Oc0yKx+F2C7lAbEtnTJq16olzzJcm07Lti3TUZLTfVENN2ZtiHA+XtbxxRXPp9XKc0VLNBmbv7I7Gf8RHiSnlOrmNZ9cZzVwpwuIY7uRxeylU2GylWYYOerJBTp1ImNe1YesOqOO1nq79nU2vsmNth2St2XyYvU9llTDyKuZlm2oO61i0z/aB6KF9Gij8XT2uXakPTPjmvL7aF1pRuIWeypYXeRVuY3WEy0JlGktv+7OwWiNJuOUdSfT2j210W9p8H1nedUlmGU5qwVdVFhFeac6jDcsNorN7JWP/1OEB/qn6CwpjQ6qGRHp1OfCisg2chQziRpyaXVyNC2mHVYOUA46akpjvJ3RS9v8xu6Q8VvnoKtsIVvnx2NetrRdhE+qRZM10nLza2IjMHmy1d4amQ4D7ERywlm2v6qdgUAttqoxuTBp9Knfg22ZHtPk6I0XW1LG/Hk9Bn1RHt2ryYk/6vxo3xqqjexumc9GbmsdUMUOzKqYFOqP/HeQHq9WG1aMUpqK2Sjl89WlLNGeEy9qCIydY2IiuFOte+6o2iChdZ5dY/l6xPorqNQsKwFZ+cqQLUed2zIduYW6utDRYquVcPZoushPSTnbtrRGqIQF2y94aqNsvUld63zspLhLyuX58Gd3kc+hqnJGO23zl3enP22l80aEjmn4pLKq4d0DgUUeGoms0+SWZ6pWEUVwqeecMbVhWCTwRRU+3XTagNqoi6q9ut5jydpvsh2rrpjLm3tqQ37pbFB8l6/rXTYQMxetvWDd2+lKahpNl8w16dUk9hOMqI1o2M7vin8F26tIrblls70M8S93ZvQc0wooRvYtEbvUnNen1M+jSyTCkp5VetaSXp2y7uOi0jjPt/bZ1DTicH4VxNpcEkXiZgLtbpgzXeCrDTKlp2Wl45hIMx9LtJV3ejlJm9/QnY1eu9K5DX+IhsKb55MZtcEPD4eBtWmdSZf1EXx689Wdr0SekUf29KKVOpw4asNc06w1PMW89JVbvP2zxMs9lmwimWeG9d7Lbn+oNvjf0UA640L7nJoGKhOWUht6YO1I+oPExqvVRkHOY7+j2gzdOdldH3O5DaO+oYAg1I7nUNbnfUuKFLEneorCo//29nq+MHvK8ZyVjxnVqsBz+M1dFWVBpePm5rzWUfJCdrZThpEHKTJsaB0mK5CPryqsL/bXfK+VsLmd6HmuO4nMQYv2uQNtWyS2EWd2wjFZ0FJzk77Oj2mSa6OhNmo7SnLE3b3TJswrS0iNOMhAbsP2PnsCBqZjmaymDELFWQ4iuS1TU7zaku4YzyXh4K5LzDIdtcENp7an9Vg351QP94O5lfd11YZRyLQsKlFLM5Jh/uXx5DKQYlBtRNCVT9rAUxtK+0ZqQ2zffNHRyW2Y06l8nosDItHMzs3lNnqW1GWqaU8nSLjvD/AjUYrDgetyP01Hd6kdjwant1NiiLozsxd5aCLFkv6LERL4B1u5CK0bqZ35UVf5C8PBYysPyaavxTa/ozvlCHtd2/SdrmbRXTM4h/LVYdbXQkpLjflJyvDUhlRwtEJjs2tZgBVFjDXXpPjwTM2qjW2ZjmuuebXhY6gNHZVUSGPWNDSFOJ18+bwl5cqxzo9pWbeVyZhXqA31lT/z5NpvjrxVHnXkiWWAw+1484RyUk3vLOYAfmfuy20Ya3v5iqZ3PJHSAmH90q7c2Lv3cxvliHXmVZgxWBdkff3a3IY+NwgK5CznwKgzT0raZrtpXs+SeCtkBaRObw2SS6TfVrrwmrkNojb21jozt8FrZk6hKq7JgKPns7qqxyJsDtaWstivdjI6afPXdudBZ43tarG/eu5rtMUxkFYbSnt39S3NBxmfk2WBpQ3k0uF2wd6Rb+V61mCkV7Z01MY6N4NE9tfTxDUzW+PYLTk8pOl0jf6kWvX1llRDfcb0ICCIjg6oDe2dx7Hhfmqe/Xw8r2qdqzIg/4zUhpoUUm0Ux4j3ut9Df7xKbehDWwcctWHmJtw5kJg/vZQBNWz1EL2f2a0PaCPcGPkStWF1l2xZ+rkNPW8CT3pObTj5z/5J5u6StEmPrdfWkdyG0QBeKLU6X/eVyevy7Dvf8PzVXnc2SEXnXNG3dIcquIHcxgCh2uANMvrizulWRpjbYN+YaqNuktSOXhSlI4EbPQKyuY3attfnNoh3rFXKTcaVN9ZXf7l+oSXVKsLbLKq8pDbMfardIWdcqjTuqg2pDEh64lFMLjy+/d88m2qDFmSxWr+0uIVXqg2hv+qfptqoy31ebeR3QjXq2ZvbUs9c7m5LqI1uqAjyEMNqg8yYodzG2e821buO9HxuI9Z4unA2wiqSTuf1Dmdavj63IbKN3m2lpV1CpbhjGiY8PUSIK2YwJEfK5tsN3eEbW6NyFpdDxvNtKpSTLIQ6K5fbcNTGrj4kq7yh/mR+jGeum3XrgA5MOtOJuZNfURu8Bns4apaIalAyt+b5utp4oSXVUAu10YyifTZUG3J3WU7nnW5OQv1Re1RGbdgHrvOx45QOXvRW2Y22ViuN1v6tGvmdpMb+crVRu1+l8eT8AtYp8mm1EUt2WjZJ4amL91J/R8FRnuK1dExttK3VtswkbejnNmQgzbb6u/navqvAZu7bPBxdaaqNejc9G5PjxxPcx6x9hwy/dhy8qDbcQHx+IUNc+/LqSL2qO2VzS3+rwDzQjIZkXFlkGFcb8gsWNw21cT23wbrdvnYGQcdvrhPJ6tqmtW6WYxHaSrb9KOl5J3FFi5aNLi1ms0bpfqlzrWh9UW281JKsXTS3UZ8cYI54YCRLVlTxLqZT6arSbC9SG2W2cr0gpl6dX/USoghq5OztvHXhuCXre4b/QbURrQZVCPOhp/fGywg1pjZcCUGVd2c6UBks3drQJU0vdVfuzlIp03Z9S9JNLVfnWm2Irc7RgWXpKg4+u++Gb6fP+p2cQx2SwFmK5O+LKia+hI+VKdr27g86R49GTHV9Xkn+ciGN1D7kLh7WN4dLdBxjmBu6s/GrJc3djPXzktpwfdLYV+gFkh7tb9dF270B41M2MzBc9PKaarrXKKujTtVIeMfn1Iah0dXBZ1oh7PV1teGXqVvdtWQvt5FBKRZjC8tFXaklPW2vqA2y8jC1wXQHy2wxeSZWYr2B+T73axRG1EYvb/BwHszby20oNWJFgFxuo9dCx7xqwNdy4xUPZ1GRwV6qkG8nkar1eKI2FjvEi7VF1CXmSmCOPIFNCJN/eYQXcK57/iiJ9YTPSd+YPBqoiFwap5NFtL5aSYtvYieTym3YfpLvy5DNb+jOtkz0FkyVXXs8elOat5LUQHvZM5w1iJHaIOXT4GzkNuyWZKzuTSU9EJaucc5WW+Z9nf27TcnO3m8lmQ7GcZGRtTFGE3h3WNLNbXTVBh3ryP525JrXgWlrpI+8mo8DVQaSryQiopoZUaKavPXz1fubkCG1AQB4juTODvxSwCvALwDUBgAAAADuBWoDAAAAAPcCtQEAAACAe4HaAAAAAMC9QG0AAAAA4F6gNgAAAABwL1AbAAAAALgXqA0AAAAA3EtabehntyeeOZdhba/i8h8pJ59wHTwvt4fzLoeoYN69gc5u5A1+/il2tZnHojpPy/MNNERoTf3AY95Bqw2d4WGvHlAnk1d1eE+vViarj2S9aMjL6Ge0G4jnI9PHQNpPEKxlPjPfMo6VsYZ+jvgtM9RovXqvETVH/HDMesjYs7P5h/4jV+1jjFYGJxvfJN4v0POIxJNuL0X47PPB2XFrfbXaRS++dGrvpNcOdzjLHJOpp4eOtbV+NTi/UsHqJQzkNgz/q0/Uv97Y9p4GIyiY1V1dTMvDm9fMMk6ilH6tRrp2/sBn77ROf+RE7y81r1Mb/rQwpQR9zrP9sN/ABp2zncXYdYzkiswf6a2eK90txWirP9/DR23zN+DQ5ZO8FGFejUA2NtjphUk/VT7s+OtmqBkOWi3TsvHo4B+tQ1O0CgSKxT3aeTGJvfyYr0ewm93eKGbRXkAToF4i4/fd7Es3wpvVs+OsGuX7xYY9pS+Xnc3bNJl64zsNNzl8ZHPpvFrlVdujZLB6DaPvSSFvssgZplvi0auu2tjPNzTsl2xtv0Ekldsoj8Kve2t3XHIvAEjlLOQT8AO1kSzvgvf01UZuntLgmFEb5CUcQcj19YhtNruDD/PlISnNUpspky2WtVf5wkDDmVfyBsdWhlQbYgM0PhlG1AZpWldt2J3KIseiLHCdBJt4IYtMXIpmmENmH+r1wopKmUQfa2asGfPWi7e4xjtgSms6G59MhNcKxDSi1ZxndkPea0tiamODnfHrhru20/db5ZVm1eJldAmGgnw6WL2KJ+/bIH5zRW+1czJqQ5+VrMOKLzlK+CSR3hiZpjbSfVDt84/7kbmN7IRJF9hXG173et2WidL4eMcr1vnB33yZqVWmiGtrSIpAe017URNLtiUuPzU/vJRVPE72Bpe8WVGqDedVa2NJLANnLA4vljNI+3YY7MUlKTo6JHVpt9Y3EatCG0IlhVij19mIJO0I4i6dBmRzG/qK3cDgmBHeuCjh6bUU6facDh+svbY3iv3DzcNdDk8sX61tIlkXCreXpB3Swep1ZNUGWxO9wR5cgWjP7KFu608Xp2573LqzwMhUOu8VlntT9a3OiBPKajMtK3+RNz/m7V5JMcambNz0LjejNliBfiaI7sDKv4VR6qnOtsFJUT7mVeUTfBtFqWBjxaP1q+/sYatJcGubfiUu3JDbeP0MpV+zV87O82EIcllp4pdeNvI2TPpvs+JO1YnNbq2zfWxtiPksmKTXkGzhNKVvysnkNqoJklmifoSvkjxASRGZdXpqRfPmp55BYiElC0oUyXstDYc7nWz2lyXfOEHhz2kEP1i9kJHchpjg50cXcxvlOtqFvICuya+71yorwluR3R0EHpKlM7E5b2zeqD2ZC4+5bHz0VeWRVRtGQuG62qhHykwHOYKWcyWl5p9UIhITP1m1IcO593nTn0aSdpqMI4VPlgVkca4PxtjCrtVH1QbvDTNGZPhXzNCzMjX3jg+oo9EOzMYW27n0yPc5zp7YQpvA815SpchtyKPWcvsaSee4s3ogt7Et02NeSPXhQj8Q4ePLMeEmkqTP+jsnC9KQbdtcUSx0LN+Q6E3864ZbtKQfospIk2BunbHxi6iivuRFF2MjTT52g9VLuKI2Ah/Pt22dWSjJqw1j3Q589oraEOeUGze8b63cRmkkMZkOv0Sfk7W7K3683nra/HKao7MZupTbiPDURlB9q8A5MKtXSQtrFptJQNJ2emqU29hdHz6+Ilkvo2O8rWf3jhtZjCzHQFCgaoOUpIfMCOOO5NMVPD1DycyhGa5zpVpHNgT1CMfCtT7xdX+zW444P7T829QNJDnfgj9d1V6W21jnQ5p5iwmfJQMRnjsPa7La+bN9Fzm5M3nsXqU4lLiSqVoE3jLcuqH6BjQm6OPRoRLnJWuvb9xbMxvX1Ab5c5oM0Z7ngtpY25W7WvPr1QbNMbQL65YmaBXQouoh62x4vlgf9L41kjdBb60jL2uNH5Tb4IF5mud8bkPrwGGvIOcc9Y3kNlTr3cjBjjPDdGthVRt+SBqbdc+ojZ1tzUMbPjlDz2rqKJwrVlUeorRQnhqJjWBs0kta3S6Z2QraKjO3UdpDFzB+gNOQrHyn1g9ECVcB2QifVBtGC2vyZLm4E/LzBuEK5MWD1w+32UY7XyTaoL36wevyenhFKWSD1eu4pjbqkihX2GfUhj3A6gSmBMiSHkr8qE+R2vCyWlamnVbVPl5JOm9bppbrDTbjG72uqMwa2Znvlp50l6zacHrgrkm2oeQhQ7mN7bjrhaUmgt5n1MZxVFM7NtdyG1pS1s+n8wI7a4VUG5ZISOMIuzrfOmqDdM1RCa+YoWQbOdGfbkoZQ6vlEcM2vbvwWs3YyD3idYOplf88tyk3qjas1lK1YUXAlHwXk8zaKOlJMhDh1RbJy23YTaVhcRDWom2jXbqkNmjBrxnuXec2yCTQxjKy3Ofn5gLo8DPmNhYWKEl4JDZNd34st+GtIFHAvaA2eqc4dcswUEN3s4VTcrD1GMxK1+8HBsA/7uW5jb1GmXVr4YKZqB02r9syLyuLf3Zug/U21fuc2ihlDauNZh6yQ/dlh9p6syOvqw1ncJ3chqhwl5EtM01eNkO52NBRuHxIE9RetkO2JKU2Ovs+K1uiHjo2oDaYgZJqY605JBp3tdJj03XbyhRcvDtcuhHesp3jJM4xbIn1HClwmB7e9j/cpb1uuHcVovjeLAgoTFfbnXhZbqPWmAxWz5NWG+tcrj7RhqjJW6ZNbsnO2yjQwpF1OltP0gHqw7KwwAWKC5eKajFlTp1TtaYPjbZEEdCo0g3dZCKIaz9B7zubAZdYbdAyyCrpTiKRQ2qzku+2tNogn9bu1/vlExkgo8v0LHsETPPQJN28btsmzCG6uPI7PEvjj7tEqVBby7W4YnY9LL5NPYUTzbqLuY1XzlBzF9gKqotilMlw1UbPpQ3NpGYoHQO+xzDHRtbazViQvKjdzmZSI3pIrW9vqWQ7khHeKIbNRmYS1gOikqpjm427kLCr1Y3nNl4+3I6PkZsuvGXA/7LTw4sGywarV5FVG+1WyVgGil9SdUt9zGt3VbNCPm9F9GXcjqHJJD4mnqOL4RHWKShqgyvFjQXe9WFqCaOwWO0N5TaI1Kkxhfzt7XrtHrd2CbVRf3ens172To0cO+AVF2krp6dPz+7o5IzKMp/nyh3rns9teIPrnEHMEw0U8X0Rd18+Q8Xt2XRGqBzQWn+pYkPCaCK30dnqpqdTnNvwjJDMbRSsxnZWT23QkQhP9G4kxJUpym6MpV9UY72O+5gu2ekt49XDrY8Td3c390223auCtNyUtUFv0sHqhYxcSQE/GdfTb+DNg8EF7xS47k8K1AYAAAAA7gVqAwAAAAD3ArUBAAAAgHuB2gAAAADAvUBtAAAAAOBeoDYAAAAAcC9QGwAAAAC4F6gNAAAAANzLdbURPYXTfgqZeNwkfyCl99y64+vwSb7GcwqNhy3SR8nxgtSTsZP9ecI6+inL2WeaR0/7BwAAAN4kA2pDLH3iT/EwZmtd77x7Z535g77J4fxA+xVGVkPE0bUY/p4c89n2sozhZ8YHb4qRxbmHvvIdAgAAAMCPYiy3Qd92QVZC/lh8+7mz9opKCtm2JXj8Pl13I7VR8gb8jVLkhTiP8/U4TG2I1y6otoZvcjHbu8cSpf+CGP5+BffIl784BwAAAHg5w1dS6kpcVkKx1+Yv92HvIsq8jjizlvpqg70FaaXpip56OF8suZqXKlKpjf4LcSxVJHtgFzctmzwutCcAAADwlnjxfRt6jSyYL6h+uFc2WgX6Rbyu2rDfTWjf/HC8Ed4SIXrpf/YtQdsyuVmI1hmjFu/iFa6mAAAAeE/k3zjf2bizZf5UD/52v72WvKiN6LCyzurDpmVRazS5/6Oc+5gm4/XXbC0/2joti355eSdr0X2lPT+GySx1xUedHNsRl1IAAAC8A67kNsgKaSY45HIvT2IfdnMbup7wLtFWOdMmKolx5DYej8djmmeVeuB3ovjE11i8XEnrgS/iyhUhXgJ+kQIAAOAdckFt0MVer7beGt9TG/HGPVQbMkEhUw78VynTsukrKdaNHBlbRL8mCRIP5pUQdV9GNUH3blIAAADgLTOuNthKydUGXSEld+U2yMWGeXHujyDXYej1C642jEd09C+hWL1a9bUYx4bh5amzAbYJcJMoAACAd8So2tiWSaQN+BLobrWt5ZFeUKBqYymrvNQUxw9eeGbgqJQ3RLRS3TyRVBspa/AcSi7dkMht0G7vVPicKkVcPkKiAwAAwNtlSG3ouxmcnEPdtAe/gF3ncstE7v6Itpyq39weT9Ag12TYozkej8d5l2hVNtNU7wc9jr54JYXfwdIKCk+uHdcPFO38JoVlW7Tdke8AAADwNhn6TYqxlvFluvz0I3GXaHsuR/xzl6ohnGeJ0saJ55mKFst6aBHZ3Ia8tkKqM64omd3Jdry10pQY7M4Q5DYAAAC8Za4/bwMAAAAAIAPUBgAAAADuBWoDAAAAAPcCtQEAAACAe4HaAAAAAMC9QG0AAAAA4F6gNgAAAABwL1AbAAAAALgXqA0AAAAA3AvUBgAAAADuBWoDAAAAAPcCtQEAAACAe4HaAAAAAMC9QG0AAAAA4F6gNgAAAABwL1AbAAAAALgXqA0AAAAA3AvUBgAAAADuBWoDAAAAAPcCtQEAAACAe4HaAAAAAMC9QG0AAAAA4F6gNgAAAABwL8NqY50f07Kt88NgXq1jvZK2ZTq/3ZbJKu7Bz+albcsUFW7Vxhu5zqLBVmu3ZZKdoo2np6xzK842jyh+W6bHvDoHz2s7gBpLmKqUSKyRqvsViDqVndxRlR5D+il8gpYp+jXPntmcpjpflbL115H3qtZlztW1JA/LmmikB8bXrWRWr2Hbnj1HW5LiaIs7HXtedjbD/C49Dr2uRIZxJibFDCaicKd+Y/DEqan40J20pRLbOqpx4jBqH7uEblS0q0osB4kgIAq0pqF/yPCksIt1BjLhPaT5xLbWiY6l1vmOdYIwqjbOITE8JRlLxQHknHXmUUGcu86PaZ6DuTAtWzAosiVG40yP7UxuMX3yY2Uu0KIxRidWv76g+jgUdVppt5Mba1T7lXNOUeVFWeX+xNyqu2y2R3Gh/ZWZwobzbMv0mCZzqc+VSJuZmEhDJiKONaY2HLVd3PzwPdc8vOOJ2TZG6aYTEH0HNywstxDOMnFFbUTz2inPK8VTG9F6FNr4QnwIzLqty5QaZ/ZRT230oiIvtr8c9CYkaezRTl9tHc0yFMZRRr7lFiR+XonVRyd5Z1wzOxvXlJGeZExtVFt7aiPbA7ll3/d925ZZfs1KH+x0tBVqHQkaTFR8T+XGn9pN67uml9tQaqMbx66qjTJVzaig1/qxOs6u0LZ122moDTaUIhDQHVs7zUzC5V2u+kMQYIaSFlpW6+UxayJWnt0Dy+VNKXEE32nZ2DRlWRazrt6SM4icyNZWJJnbOM8/u0QWkCtojRXXf46rs8iaKYGoaaYasY18OT50Tjxt2NvhRelwclgyKpaGJf0pOJJ9xbsazLLzq/S2NkvRwKNTRSoN1jDH7nJ74mwnX57nGFIbzRD93MZQXskbOrrgd7ajcp2x45G76Qubu22duCKvyLiwvFBvPK2rJuaVFFqi2bKLnnMsp2pR9cICO7ATh89tRBSrLAsPqA3rmCCqusOlj0ykdPpeqoaKrtvi47SJ+gunk4vmKzq7WHOMVGcjwRL86/yYlsVu85gbuqk1OcV7uQ3mN9yB6IiyGJbJbfSXBpZII7OUewLflnrWUiticrCvxgc/KAYTqRvS7E13OiruY8tBLrchxmAsXpKjn87hDRVx9s04PJPbEKU8PVkTDKgNuiu0W+jOIHshaOc0C/OtU11MpymrXRKak+YE6vUX4nd0H+lZXfaoVCtS00Gjj2/9kMGvmuRyG8KRRmaw20JLRbiFmZkDB+0Ux64zOJy6WqQ2EtvVvrxX055kS5pJbOmVzm0Ylgg3lJGJlPE7gUtsHlrRrQXbMk3LQhcrL+3y6txGNbY3llVclSRA4HZ+ImOe53k2Or6PROHc9NKFly6YvidTr4cw7yXVhPFEzZ34kMzyTMu2rbOZORbjzIJ8aZi7DJYz4qi4DS0HqdxG1a48kFJ1AAAgAElEQVShNGkKOsyKjwbalNGtQqNIvM6PefF3cy+XEUmyamM7L1U3tRHkNtSWzwsGdPq4Rl7nww/CMbadzxwQPoN143RG3hlrKy3ONylCDPA6uqV6uY1QbZhmuaQ2Wkxr2z8Z5+z1Jyc4LLv3Zpqd22gx42II6uc2hCdxO2iNlcjA8WBn7fJsk3ntNJagtNoohdfh5tq7FG1X3zyDfcZ69YI9X0wvZpNlhaemjhXfmiaZ3EYtx9mQCC+xfMQLXCU2le3QXC86xsaU1e6X40Nn0Kz5Zp1C+x2rjVRUHFwO+rmNbZke8+LfGWX3mpjs7tyGU6hf1ypv4wjq6pIMqSmyamOdibaO1Uad0m5fqCskchtOhWFrpaX0MrlEWRoyVrbun+fgnjrj32I58bxBqY0fl9ugFmtyQ/a3t5wFo69V3bwsczzRDLXhLdqdvjm5DTNy6IVcf8JtkcptkB6UFFI81VMmSnylYjRTGfQstdqN5DaMwRohEwp7MTUXqEkY0tM0UaeMVPSobXNCWB2EKA7wndFW7tX13Hy1rzxdiw+nkTqxI5Z5pz85W2zmf9mo6Hzi0Z8e6zyvYt47TSz99WarOPQKRkgNtuquby+5+36603Js2e2SVRuibl9tmE7zVG6DV+gcSnSma99qZHJQW0/40mWuP/QPaxJyl3VyAGyb4ltYWI2qDdXtO9SGtrO1aYk1vf5UdEluWer/tTboNZ0vYM4OsbtUOfZIWspIJOSqJV5Yxsde64wP+iZKeb92aeLqj2kSvzUiCaRObsNwBr2duIhfQDL9X/MtlkX4QDjm91vCinWjMymP5FhWMx8ucxvtY+vo1gbbRlfiQ3ULf0YoS7hRoJ/byEdF/klnOcjkNkrDAlGi82HUTNN0eVts1XXKem+vSo9155TVCnvNJl7oToyXcV1tGMxrnbbDaiOb23DsmN3elYDqBHY7lFQFbG59DQVim4eW3J1XZhHTspAGamn0uisppt2i0JLLq3pqQ0TiIgktPfeg9/xty3T8EM5XwVHvsiuV5XFxRTo770X0etdAR21kTWR002icEz55ZLXUhpiFUW4j0ZIkVGANBcBcbkOs1VnJmFmqSFUr3W/qLIdMe7Hk/llMHXAjmxLYdzw+ED+Q39FIbAcAT9Po/J8cyEtqI14OkmsDC+JCrKhASIwpsz8DCVazQVyY8R1w1E39nVpFmVuLSettjt+M2nByG+c/U2qDdoqqjaVMCql97ZpVfWTUylfW8kDdRc0gFk+nshWhjkWKNiqz9ivko+S8qpLfmuGm2ugvL6I+d4+ulj7aJWeHp8/xl25j7SIlWeGzBEuyrJUYfE1t6E/neZrm2XmkG++Zd0xHwuhkzdmnJVIbWRMluumqDdIW+qX8zGqOHOu82ujqtn0nD+IRLVYlJeu1duV6bI7Kts38t2iQNxLSN61G7tYSJ36D1nQKiTn0y4jB+LCxO6/EOTTJyrWwKIEsBq31ndzRq9VGSxW0uGwt6ExtlB8gHneFmlFuYff/bPXmJhmcMoNDWm36qqtfUmqDWN1es99DbqN7XF9trPPjfD5Lcn1Ipc7kPoFvudi0bakJdoNC+5RUyIs/yzl9eW3XJQ83zPQnMa90Om1xZnh3XIJlx1OB9nipBJQaD7GrCdbDsxS63FA5YYykkDsPNVZb/t56uS1rrjEt5fqM3/hIpSnXNxa2Y9nhdVie3VwwYyKjNe6wi2poUWu76ZW0PjSq/gVsUm1094JGtecAOYu2XNGcadYKW0p3N7mGiBE6f4ihHSNQG9wsY0qY9eb8o02a85JXi2phkdn4wG1QPtFBR2bELDeeyv3FCUVZ6xpXG97sbubz0opko2scYljWXrOsVpfy4xDIqvIniGm8MLG5tjza+Sidct1BHhavID9ebTgDTObhOj/cH9y36CRFoHck73YkZmmsr6Vamxi2VCp/YjVTLa+Ka8sUaVbYHxI85NLJD7BDtr0JDXyFjYszoGOI8K/CQGdy0dOn+uz31btFzNwhyGEjZSam9i6SUOwkte23OhntyDNKxz5TDcY604DVNVGSqT6zi7fZTGV562h+5ewMTKegwJ2iMz2HUBJPh2wnbljlt+qjQadr8kXP4NFA69So6NODUvHB3l7LzpVlzIl3vL9DQb4fFclXmdxGND6dTQFpA+lRSnqz2JJJPKmDePFC2dhf8PKI1PMsEGqhZvpXig28le1X5sXKFYBB4IEA/DJAbQAAAADgXqA2AAAAAHAvUBsAAAAAuBeoDQAAAADcC9QGAAAAAO4FagMAAAAA9wK1AQAAAIB7gdoAAAAAwL3k1Yb5WD/zsW30Ibjuo9bsEuzHsSaez+g8pD94NLL5Wg9Rd/Yxjexp4+cfweOM3Ue5556EeQFiV/MxmJefgFkaHTyB2n5CoXdo90jzGPPZxpnDOJ0XXhALei6Y8xj+JGj/2aLqdT+yRfNKm8xnj/F88qDrXYjtuo8bPw9yx9IuwHlPizG1hdG40dvzdp98cJg0euA9K3tvSWR2+xnB1IWswl8bGdynYfttfG6KySOdR4kbFhsYRqeELM7ohiGp27rbglW4umSDFa19Tfju0wzkNmwloKMl/4S8Usl6Gvw6nw+e91AP5bdbxp7THz5SmGgh80HReZSP9NZsWwONPVI/bI7jH3oVGq2otFHEKfFsXO/NFV1ztOKChg0u5I6g6wxx2ITgS3f2u18Y3SmvK1HmMSs2l14yuOoh7NdCR7GZrTZ8eS3+FM/eth57bQYX750dtNftMOanxqwf7Lh6qHm8b9FGlp+cw8PHPlp403Mnz7aYr8E+e3jLFBOmdLRz2bZ4S18zld1OKlKc9+cFXFEb/mbh/mDVWy7SwYocyM65Yfc7diVlnUVEtL2BvstpW4JHric71F5Hok7azreVkQfYl9j4mGfxbq0Sir0n/1uOHVtDzCERWGJRTN7yWJr8zOi6z+XXW6NxvSHfi9Dbx9fg+7ACG9m1ZyIr71V6H2D0MiEo7WHrnkhPy70Tghe6Gi+7orUXpwyUufFuiESKrwtRG6UH59sBt/MNXi20U1cjFuGvgrBtaQwrmcukpPZCu2pNqTbEa0wuTayjpHAo6/SN354R79SDxqmJe2WfYBXaIqSbjXzJFLNfT2JIiam+kWdjoZxq2p5cuU5OGUzLljyyt014UbCK9jH5YMVckjT3BblBzRP3bWTSSO641e+PErxDaVZ0bS+pmuep6hqaTS7xqQjkEsCrxKjliVyIsQfxQ4ilBHN+WOfVPJ/tPt4aGxgpy2q/bdFLmrIDO42f2Evd+TlOTklUXMTVGWjMvmXdO3aVVptlS72n7KsdvrHXx2uXknKY7yOkkc5l28//e4YJDSbH/eW5DW5ydjjfcoia+Zutgp1UqU9vdpX7aJdoMzpYVCOSm01iHHOWsE/MuWj1O8WV0eT6xRUvr51ivJNcCbbZcfxrW6Z4O/uSjZlnm25uo1+v8vaXWTK8AsAKHQlWahJaW/qXkVQbpd2e4eUGyNxylJKOD9fjpcmZSUMixzzXd+m26U0DmxzN1npnBVjry5v5GcYeTfRbj4irKqVorO+OD4sboARVrSLcMvmOM8ZWY25gFKVauSSjAtLSYHFMbxeMghK5DdHqFi4Noep8nlEbzjZYa08eZfxQPE3kpgdjia3nXZCxltroJJucrRdrPftalkJSKd2EYV3rrXX7yqrclkR/5TN2sHFuw26Obb1R/8/2qYZe6oZWNvS1U6wVeCanWK6qlDItC50e2oGH9naj4+6XaeTcsiPwfYIVjVT7SLCSC6MVnl4pOkZyG0w9iKXB6lWY21jnY7kq+5fIZeoo0MlBLMWasy0zactWLsLQ/ZjObexicLk6GFEbLmyCUf30VMKXVNyyRDKmNFNYS9CI3lO1erkNf1nZuZlUOjqoT52sXUU0TG81chOY78DGcxsB4XLDPF30SMZhckgtI+ND/XQOGza6fZ/OyUTtWBOPKaqTxomlNln0vqHqKmFOEQWO6LCIi6kpyEaIjgPptUz0dL1qW6bHmdHUddlqIxyYsUEU2w4eGfSu4+VTTHRyO1PQOsyWltnds/X8i8jkNmrz3SETRdwfrIxqs8Gq7HtrZ3TUfbGhL6kNacPi0WIjGOc26JEd6ulse9CWKFKm2TRe0kPEK6NAEU3SasOylNlBJ1F7dWRp+GhyQ9UYFW/PC2s320oK1EY71IfF67Ilz09O0Xo54YpTloxPVKZhCTXrXpvbME3Drwn6asOCj4hz1JV9frPdNK8kLMmq2RmOVC/fG+2whrUdyAbQOI4swEcyyMhypDu/zm070MltiD2Mc+hjXtd5rlfMolmhA2bGUJ3uxPfxl/p4uvc1U0x1lakMWk/xlLX+uifObdyhNuIxMVvSTjvnLb899d5gZUWqnceKKFgVnwzM+hbURqFlcNgSl8ptsCO9Q/ncW8utCVXdTPWWDCKDuDy0yvQVD/d59pE2glxsjaZ74odnaxIe3huY3uldkaQ/lQqDLJNtS21j2k7tPdnQa89KbhPsuo8BJJ7oqAeOzCzq41+mNmgRxtE8hUEGtu2PO7kNMaB6hUmQzn3Jk5zJs/u6wQ4uwp/sTje14e05nuzEpixaF4bJuluDFNLN2F3MbYz1RuD5wuunmDPna45Ke/5WL5EH/V7r5fTXGWgot9FzrNuDlRup9sFgRf5tB90rOxSPq2qD9LZpDtHEgdyG1Stx+sK21CzRaae2rGJVXHIMytWG48tvJbchT9RpDHFErnZbbYjU8rO5jTrRumqDficmjTH+2zI95rlcH05M4DVMuQepBbFdyEWZcuy0bCu965nVczm3cVqoLSpsMzBK2CddKmu50lrOSbYTO+vwdN4xVGux1AY5NXImD6H25E5cH5pJ412a9ZcUX0xXeb5sinlqQ7ukVhtiZTCWRTvuj8bRkTnLmuoUJt341cEqjlR7PliJzjje+aPVBgkEdaSsyW3IBdLls8Ss2vCGezt+4WHENCIXRZldtRFvz3QDDZe1cxtRprQ3S6Idic6URttGq357zim1ISNG147d3IbZQmeBiEO6OKMeTO4+IxVKNRnOKm+7YPY0GEgWCFg6YmN3ydlqY1vmZe3dt6HGrdu5VyLWxm5mZyff2UaTq+1mXqi+qDbcdZefIwOQeyhPpF/MbRTfYAEwns9jRGrjtVPMmfPkvE3VqzZKsqk0GI2pjX6Cjw6g99COQG3IHdpLg1V2Mg8Fq/pvyzZXdHrEoNpovT3/IMGxbdjmOSnHqdqwCNZmCrMYPdIq1sjTBUKn0/rvmNuIFmCjKMt20hwiIRXUXkrhLunvCrhM7M63jNrQ+3M1mc7h11toq6F1ApetcuRiXY0vlGdXbVhn0vOEAU5Dzs6vZek+gM7Ix4P8zuV+xSGnn6swjU2KYTSxiSs9Ou66ovuZdX6U+0Efjzae4RQXLYq+EV4chOR1maZgE5yb9cZuTR383J4z2re8doqpAMAfhkIcRqQuXNql9OBAZ/pF64gWQNs6K01kG4WZZ1q2uyyZiVT7YLDaWlJWd+ppXSsYUBuH9Y+MgdXjjV1KivNTLUpmcxve7OAF6gPyuQ3mu/5w0cO8o7JqIzKSEXuHA0wcJ81n0XunW4d2ndGfl0ZuY4k85kycRj416AeHeDJyYlaps2N8ck5i4RR2rMunkUEVLr8aSQ8vYeikWi+lOeJZTPq08l89OAWU27ONNkij6cSh0Ma123zfYxTmLzL+nDrOsSzZeuSkoZijSu1VNbvnafSROcZxL5GM/hb/1VPM0lv6OBWTu+XW0oZyG/Zw29OFItNpkZWSmY1RS87ZSLX6Xm0Gq608zsbu3mu3KCO5DfADeW43AwCQYE79UmC4fzRQGwAAAAC4F6gNAAAAANwL1AYAAAAA7gVqAwAAAAD3ArUBAAAAgHuB2gAAAADAvUBtAAAAAOBeoDYAAAAAcC+DasN99u5SnyGcojyZ130cn3ywYu5ZtVt5B47TDjzcBQAAAPj+jKkNvojrlzR0noQtnilLFYX5FipeMX3Qdf23fGIyP1C+QwxqAwAAAPj+jL6VzXhEfX4VD9SG/FIVSt/asy3yXQX2gVAbAAAAwBsgrTbOd9C1/7Nfo3W+pdK6zNFRG/zvxJtlzCp0o6E2AAAAgB9LVm0IJSBfBE2XcXFFhUiMjtog0DKKwBBvYeZv156WTb5Tc4faAAAAAN4CQ/dtnJdSxAvbp2Vjb+5+hdpw3zPczW0ctevDpmWB2gAAAAB+BKO/gOWZjCosxM0Sz6oNceDO1Iab29C1I7cBAAAA/HiGcxv0PlH584/jz0tqg0kBLTZGcxukUbSKzm9mAAAAAHADabWxzvKXpmrpJjeSDtwlehzOFYK+7/MFuQ1ydwdyHAAAAMD3YyS3Udbptl6f+mLnP1B1n7vB1YYlK7ZlOj4wMieW2liKspGa4riThCuLqm7az2kgOwAAAIDbGVAbfKE//2nmGvol8ELq3w/z2sw6Px7TPE8pcVA0TLmoIx7pMa/r/JimqRSMaysAAADA3QxdSbHurCCfO3qDXllx5EJNaehK57X94CV+Lnq9r8N5lmgtgfxmBbkNAAAA4HbwVjYAAAAA3AvUBgAAAADuBWoDAAAAAPcCtQEAAACAe4HaAAAAAMC9QG0AAAAA4F6gNgAAAABwL1AbAAAAALgXqA0AAAAA3AvUBgAAAADuBWoDAAAAAPcCtQEAAACAe4HaAAAAAMC9QG0AAAAA4F6gNgAAAABwL1AbAAAAALgXqA0AAAAA3AvUBgAAAADuBWoDAAAAAPcCtQEAAACAe4HaAAAAAMC9QG0AAAAA4F6gNgAAAABwL9fVxrZM07KZnz9i5vU8dJ0fqohtmR7zKgrflokcqWqoBRoHnwXu+zq3A9dZn16Os3vEv7EaHthoWybZSOMoA95O1475Al8JsTO1Lfu+x7y2A3WT11n3klWl7MPKMFulC17ndhTzHTpswx447jCdUbP9s7bkPDXh/Puo/5tNW+fHvFLTDXUnWSAxm+NN/qy6yIu8elsme7C6DS4HiZF8f6R6u+/RPPXKlUHVsHbSfJ3QbM7cNnv4N4P9+AV5vdqQ+BHJDMFOfKTew2pWPi1LJQfUMtsxdG4765a5duS8ipwamCtUG15F/KtODLwctY6JZbVBL7+jlUi76j4cWmTzlhu5ONVRNUTavNLzpcMUp/BXj33AA7MOoyU1/VP4MSmCNlQYPeP8+6D/66ZxqznjfkltiAID/+8uEwHfxatPe0cz092tzeu+b9tmSMf++R0s3XmPqEmrjUE7m0HVWEsS9W/L9JimwJHOlvHQYDY12Bi+a834UgbURrzR9uavHzGIRJxnd0r6esT6q6pc4n1l00SaKaPtMY+NnIuc4GFg7htIrnoB07IN5DaUTYjZsomYYIjUAK6zHJnxyCxGrtQ1LVuzsU5syJSXOxRyNK3gw7xinh/TssznEnGeMs2zPi3wwCGH4XYko6aSOvYkMrRFwvl36eAD/v+YF8N9TZFUu8NaOVRgmD69HsO/l1er5hsumIwGVrbjOHXUDCrF+7LdeDqXmYmTtV25oLobni5RlqKbT9sMxoB5+XhTtbzWwO+fMbURbMVcJemoDe/4niKVexp2fKlrW6ZpWan365yXdFgzqcI6uc7kMMMMRk8TWRA39sWnf4/cxmEKNRe9bWV8kUO16LQkExayLrELXU9BwEvY6bci49AO6TpoOX2d52WZpmWZbZESeuCQw/BWly+s1Ai9nsDK56oy5fzm4Dj+r9tMkiGGV9lrrVYH3QJlC11lPc538WpRwMCs9LtnSJ+ynB2e4OdsjO7o/ipRehzc5KCj9KeJDjoT3uUPOS06AYmn5C4E1T5cWZqq0vQI3Xh5uY/mV6E0GD9KbbDl0d/wT8vGNr1GKKyn1nVIjLKdtT0CgyVC3HPX+TFN0ivTasO7bjQt6/k/2kzp3IZR6vPZu2JsHW/d0kfE/LZM9s7W7ascH22eog+MAnRNLQmb3HL1PXAbchhlD38nL9rcymdpEmKrsNC0/+tSuDgQUZo2SJTOPSNVYF26tLJ+Iop/D6+e7R2E03JuRCHNxFpmXS6oe/pME89uqzQO+6Css8wspHq+DitLSnl/iJbtBrVBtx9e9/WMFaKgNTfa6SQb32YrlIbixWojlyRTgd7egtIK+x5K2ql9a5roUmNlOkte8nBdI7vNliW24jlXUs61qW5c3QuLW7vtyffQbXN6n83FPpFzbZFIzlwvN5yZaeLc9Hm6fe0DtatUyQ7d5uRWKeeBaYfJzhSe1/G0VB3ftPPLtpr+b8i5emVpnQ8FZ04FWTqpIl1gLWBbJt6F9+HVay+1Ly+pkVWvpkkej2lZyZ1LZppqWpZ0eFxnK+mvij4+WGbhL+0CL88pij/ZPNusfVTs/6JwYTEzqNJa5Y5EaQjL7vXLWsz/b++OcdtG3j4An8K9D5JaB3GgJp1P4IaNU6X8ADcB1P6bFDHSqt8igJukU7flHkFfIZGcGQ7JoeyJJOd5EOzaEkWRFM358Z2hmO1FTQ8D6U6di//pOv21lqWNGQtqG8lzU7WNdsquzDz5zv3hNlrewUlc99d8HDWSOctrhmO8+pwyCEzRj+0EQXk6UwPtzxSCc4b4BCNahc3gE6i4C4d/h4MzoXgtp2Yx/lmFx/TwPGLq5H901ws/5tx0wWVO42kjv7z9B12wBy7aYYIlyMbbaJL8ETvdbQt2/v2C/T/Y9MEu2my3zbEhPVbmhk1QPnctmOHo5/Wq2sYf3Ku7dc7k1Il1CEt+meT4FmnjmD/HA0P7SJNNG+lybJvVqvnfkiLlAqUH1WgP63JabkmHq5nZypum6bphp447I39ay9bxr3ERPSlhipyvbSTLEe4v4VzjfS+e5aCSPDyCZFq+dIduD7KZUkl4GpCeIgyO5cNzzK5ZmzhXj5+fbIlP2f0zp7UTf1j5v7Hho+EyBweNSaNLPxpLsu9fljbGg0DxHli8w4xslOE6jUWH4f5QsvN3PxXs/8NJ2wN516fU/0mN5ImkLLBghu2p8fA8/NS08ef26jht5AzXofsE2/XO1RvGelIWpI3h7F+fNpKViVYlswjz+rpW0UE1/2eVX4DM5sjK7Wm5LT2zQtJH61xpI3musLZxLMrlqqHdXPJnK+vjGKrwbCM+2mbb8ekTtPjBcB7RMSf6MoSmaaaGF/RHgqRMPbWU6S/pAp6wu+cKhrn6UDTB/F/m4LjcHD6UcNOm4Ss9sI3rZnHcLbbNat00/aURgzwbznOdXuiW7INFe+CiHSa35eL13faD/3KfYZqmynb+/YL9v13cvvFomi4iHkYHTv197zOLvmCG7UQT22uZP7VXL61t9LvgeMkvmzbavW952kj6HPJbJt+TMpM22h2xLVpNNbdxtJsp300cVLfRy7dNtDUHe1B2c2SUpo2pV0z+efxtLiBt7DbNZhu27yO1jVX6lze+GyWnU/Ef1n7B0Xa28Yj+AqJJDw9Hx4uRPXXkHL3/Mwpaw6K0kS715F97dhPmz3VGT6uHi9C9ZjwTDNu0zNJP1S8mtlsXMI5Hx/bS1uR9g8NSuhSD9SzbAxfsMMFsRupcc4eq/Ec7t/PvF+z/+2NKyYWg4OnMso0d5pfNMGyGM0uXTDZ3XP+ze3V3cBt2gPavGH44gzfsNkmulY/39HAeI3/10TaI5xC36+2xZ5g2BtW8bg2icBkdRfN5OTnCx291zKBlB9Xjc/l3mkg8b5o2csUnaSOwLG3MyG3WqTOR/ogU75nDxjl4tD8r2mSO90n70U4cdFRu2wsFuoNA9qw2X3PJHTy7DH08yehm2v7Nt3v0WMs58vhxVvEpULSsY03NamKCwdSZDydtr7rFiU8nwqXMvmX5ecAwbfQrMnUwmF7BqBHLnCJlps9YtyXdkj2weIfp3zCaJI1a6QlbtIXT7Vu287enwiX7/7atpxfXg/uNM7qJC2fYN5mDRi9+abZpGpnfn9ur+4NbUYYpeCrdt8b3hNK0EQeBcKWDjz+TNsJlOVZA/i+3Kw9zdbI/xwe3OGUerlQsOaiuu+tyFjfsb5U2MpF+avK/1Om1jUT6yQS77nRpI3n1bhNeF5k7q8j95R6mHRZDBqcCIw3BstpG9GffHloy1dVBU5HffrOtZn4pBxtguFrBM4vrTmOSY97gLHNmVcKXL9ocg2PtiPBQH4SN4XnT0GRto/11cg8s3mHi08D4DQPBsTazyGlyKdn5+2pZwf6/6y4nmD7VCK69mP74i2e4GZ4mhg1c8h6FtY3pBRvsROH8l+/V/c40/GSyyzrx1GWbOCyNnX9mVnKY00sPquuJ4UcTH2r3itm0MTHb7s9p5LB7dR9mVQvSBu+NKh+w2C75Ei+n75SQNgAoN15NhXHSBgBQl7QBANQlbQAAdUkbAEBd0gYAUJe0AQDUJW0AAHVJGwBAXdIGAFCXtAEA1CVtAAB1SRsAQF3SBgBQl7QBANQlbQAAdUkbAEBd0gYAUJe0AQDUJW0AAHVJGwBAXdIGAFCXtAEA1LUkbXz/eH978/jlV/Lwz08397c397cff+Zf9uvHKvMqAOAvsSBt/Pvlw/3tzdfv8aO/Pz/eHtLG4Kn9/hA1xp8FAN6/0rTRFjDaf6vP/+73+/23r7c397cffnw/ZI5seaMNHMeXAAB/l/LaxrevYWL4/evfNkYcekkOlY984GjrH/pTAOAvtDRtfHi8vbn/9O3nlw+Pt3G1o//34cfv9MVTWQQAeNeK08bvz4+3N4+fPh7Sxv7358d8dPj29TBB4vtHozcA4O9UnDa+f7y/vfn65fMxbRxHbLT/Pn3+sbp5/PLtxypfwOiHfRi9AQB/mUWjRNvRoF3a6H+YThtRNFHeAIC/yonXpDx++VyeNo6DNj59635489UAAC7Wwu8S/X1CT8pxyq/f9/0Vs4NhpADAe/W6tKwoHc8AACAASURBVFFQ2zgWRbp6xmG4qNEbAPDXqJw2jpeihMWM6Fs6AIB373XjNmZ6UsI+lMDxy770pwDAX+GtahuHjpJfQdpoB3bkxoT6si8A+HtUShtTUeNg7s6xAMA78cq08fFrewOUtlxx8/jlVzoyNK+9W5sLYgHgXVuYNgAAFpI2AIC6pA0AoC5pAwCoS9oAAOqSNgCAuqQNAKAuaQMAqEvaAADqkjYAgLqkDQCgLmkDAKjrxLSxbVbrzW52st1mvVqtmu3kBBNPdxMdptk2q0j3ynY23ZSZWaw3u3apD78dZthsM//PvDbz9q2SLRHp32a4/tlFeL1uJQa/ZBcvXYaCz3vio+xffdghUlOf2eR7AnAdTksbJWEj37DEjXPYtOba8vbJY/sXve3htYeH+pZuZMnalqubsHt1s43a/kzDN8gm+WcXCGeUNtJxEpnINf3T0UINNmP7mt1mHbT548vcLcDoB7g6bLQi7cY+ITdIGwDvRmnamGh6sq1L7ox/28RNY9u4H9rBTdIkxc3wtukmOT6RTxvZM/PhqX12wdPH15tt+EjTvH1to1u1TAAL4sFwbVZx7hoEs6x2g4+3/mGyCic5tbaRhJKZKlfxDgbAdTmhtjFd6982bUM4KFzE7VXYP7Le7AYNWlKG6KecSRv7/W63G+31CFqswyRJoOnqAJl+hyq1jfT3+bTRb+H4sX6t5lrksewQbrR4guwr5uob7WKMx6ZJahsA78bStDFZXh9M3bVH2VY6btjGe1K61mombbSzzLRRmf6K1aFY0r5gt2nWXesWxYFs2igacDJmIq8FTexII52PE92juaeL6gbdW0XdUlOfdBxBki2S9AhNj3zJbg5pA+DdWJQ2JgZ9Jg1o1PAffhk7mw66AMZ7Ug5PltQ2RtqotNDSNad9D0qz3Ta5boTj0102mWqpy0ykjeCpYUY4pKJsBgkT2WxDPqxUxOM4C2NUWdroVyMddbI4FAkfAFeqPG0c2oeJ6nk/ZKNvF/KTH58dDFiYGLcRTHLME9NpI2m5mmbQwGbm38+5X8Jggf9AbSPcCPlcUZI2phcsM4ew16obrXKId2Mf9L6wJ2XbtBs//MD2fTVqbgQJANevNG1MXiOaebxtiYZ5YTU45121F5yMtmt91OmvYy2pbfS/hA9n3ik4sV+v14PY0183m6tvLE4d+XEa+yRxvV1PSm7KaO7t9jtsmfS6n9BIyhq5QCa58jh4efiOQTGn/2DT9T/tuhYALsLScRtztY2k3yQZhjDVEE7VNsavORlLG9um2UZv381+t1mvm2bQSxOs3/DEv60atIEnXuwT00bawZQOO6kySjR6OhkQM7agoXzFKe7gij6eY6Tox230WTOKHVEACT7raPyMK1IArtMJaaOottEZO+uNn41OgPunggDTj0w8XIo6Me16ve5HjIQVja5lbba7oLQSZZfhokb9K+VpY7zZz41m7YZS7jbrVe7cfjCDZKnzYWy4SLk5Jpf0tFsm/CqS7KTb8Kqe5EPKdJKFKxRP3fet7HNbtN3o4SSnVZUAOIs3ShvZ886Ja0T2o01SZpbtT8HFDUlTPNbSRVFn231FWN9pcPwSjWOaCEe1Jt0x26ivoaAnZfxMPE0R3SDV6IH+EptA+LJ+SQZdWLn3TTd3skD9Bk4+k5EiVpRwsisc1LK6oJYf97JtVqtmE14JM+iOGcw5KpkAcOFemTaGFYKggSpuCqYuRmiHFw7P9LdNeJ1IMmwjm3TC9xk+MXik/3avZjPyrVcnFHuGa54fnPGG5+3DaJBu8/FBq2XjNiafGYx9nXzPXMbJdRxNzgKAi3LCt3tR4G3jAgBcM2kDAKhL2gAA6pI2AIC6pA0AoC5pAwCoS9oAAOqSNgCAuqQNAKCuRWkjc+eO13979G7iO8HP9A1ZE3c7n/ra0/EvUH2T79hO7o5S9ibjNx2ZmQwA3syCtDFsaJvtICIsbbNmb5B+uuieYfv9+HdrT9zX9m2Cz0TYKF7I3Wa9Wq+zeWPh8ufeQdoAoKLitHGsa0QN526zzt3AZMksKzZyx0Y4e++22QV7g4JNUQT4v7KF7ELZRDorLlrkS1TSBgC1lKaNvjnqm+Jt07ZZpzRW3WsWt+1jtzIbvkF4a9GptDFfHTg9fUxvm5KFjG8UP5ruxlYicy/5wVrFr3VnVQDe1JJxG3Nt8klnx4eT9fFaQKblW5I2tsEp/2trG6UFiyQaTG6tuYUM1rUva+SLQssGZMTvo7YBQEWnX5MSN8mHxmtpezx2nv4mjV/bOnft6kjaKBv2MBKmphLMYWtM349+aiG3TZRc4k6U4V3k52sbQSJJllvaAKCiM9Y2BuMqoqfeLm10bWxZbWPbrNabTTNVOwmqCP08k2U+PDGxyeK0MVjI4QCN4SNxWCuqbbQTHR/PLZ/YAcAbW5A2ktbslUMpD83dyEzeOG0ElZeZ2WZKDNNXjQS/hG1/uwJjKzKobRQs5NgA0WW1mcM7jy6fIgcAb688bZT0kixuqP5Q2jhEpaaZTBuHFYx7LobrlBlXEUWPeHUW1DZmF3L2YuHdZp2Mu81s3t1mvWqatnQjbQDwB5w0bmO3Wa/WTRO3ZCfVOk5KG8tGiYYvmrp6dLXe7NLFGbzToLciLUUkEyypbcwt5FTamImCww6Y1Wq1Wq03G2kDgPoWpo3g/L9tmYPT9+Xt1J9LG7lxlYPpDouTDChpG+dmO1YqGG+vR1Yk7qcpWcjMpOHjgwiUKbH0o0gG9ZvXFagAYNqC79uI26k3+AqswUxeFVzewHT9I9Iv6uRGyAwdPXkFx2sbp3dy6UkB4A9wVzYAoC5pAwCoS9oAAOqSNgCAuqQNAKAuaQMAqEvaAADqkjYAgLqkDQCgrkVpI/P1ockXXC67H+lg7iXfY5m9sfrbCu/6fuFf7D3xja6z3zAafjV7MpPXbOTdZj25lbLzHn6HaeFk/XvOfTBvvJr786zpzMuCe/PNTQjwB702bcwc52fvW1o8p2COE4fO6dvDl81syTJPytzPZXhPk9HJXnF3+UVLPwwl/Q1V+of+V7YuxzZ9nW2FFy587qObSBszDeqrVnM0Hf+5NS35dvpV9taCwgZwAU5LG6NH05nSRzq3ogNy4XE2rEb0izGWNro1GN7S9S2rF3GLPLY1knfNnISPeu3dao7vFbVIu8262Q4XomRdukcnPvjiU/l8MWLsnrrTjfC6dDVLP4tzrenM3IPXTm2TyyrQAX+B0rQRNfntvV/jLpSRm7lOHtnCsm8YDE66N2z7fpt4RuMvSQ/y3ewXt+Hjt6Xtt8Bs8uree2qbzZ82L1nyfoP2q7xt2jmkm3tmXeI4MtlOT7eAg3zZzSd+bffw3Oe1aDULPotzrelk8I7vmNi+h9vsARfhNT0p3a/jTfq2OZxXjjeBfbuV3IZ9s8v02Yzo3vw4tz77LEob0UzG3y7zkvG00c5uLne1DdjCfpyRdra0HnQ84Z8ULs3ougQbIP5Es6FkwTCF+AMcmaykSV2wmpOfxTnXdDxVjQ/i6P+mpA7gfE5JG1NN2bAe3B235+563h4Zh8Pc9m3zOVZFT9NGf5RdnDbGTlRfc7SeWvt0qrlhh0VOHkmZNmjD12TWZdusxvtYhsMe5s/4g8YzWYD8pzCTrUY6r6ZWc+SzOPeaztc24gUPMoi0AZzV0rQRHyxnT8TDCQ6vDi+EKNFnh4mmdpA2ugNtdwwPXh0W4ONkMRj2ET1VOW1MFkjG5rvebJqplwTtzdh57pLaxnBdhrvA8JF4Oxed8bcTHR/PLWPRxxH2nCxZzZGhu2de07LaRm6fP2XbAbyd0rTRHrj6QkXRYWxwPJ4cKJk/DraH54kRgpm0cTzmLqltHGZ06pCRUWU9KcnSz8uUbwapJlr74JdwxZMmcXoIRMm6jD27rDDTjXTMf/alH0e3dotWc2ItzrqmZeM2svu82gZwVieP24gP1yPdxkXH7PY0sq9g5NuBZbWN40I1zdJxG2+cNqJqy8wsitNGXCbqNk1mLMVU9FhvduVXBpWvy+xadF1l4cCfXI9W0zR9YSLXBs93obQ75pLVLFuLP7um3aTltY3JzCN5AH/WiWmjP3gfD2sjR6+Z43HUD963hmlj2k28pLbRL+UfSBtjnSDR8sxcbVKYNo5xLF3MwRIMAmB6ypudYN00g/kGXREl6zK1FotGWHQTrzebE2sbudP8mdUsWIuSaaqsqdoGcK1ec01KdPQbr0eMt0nxU+lBMh0YOnK8jF6Wvt/wXcInsgf/t0sbwxZ5ZmTGkmEwh8VMBpq0n0ezHTuHzjdkQbxrXxhsoHboTOG6TPUvDHafYRO/6kfoDIo3Ew326AZLBoNOr+b8Wpx1TQtqG9tmla3oSRvAWZWmjb4dG4kYo/WI4oPc3DUTyfEyWIw3PYwOuoiqvMtrzZVtAv0qZIcsDj/HJQNVR94vv1yLuzPCeZbVNtK36Jvgt17N/R9d09JB1avVqh+Ps/jNAWpZVNsAAFhM2gAA6pI2AIC6pA0AoC5pAwCoS9oAAOqSNgCAuqQNAKAuaQMAqEvaAADqWp42xm73esqMVukdSt72G5Wz9x0bfHHz2M3uF00MAIxZkja6Oy+8ZdoIZvaGaSO3qOFdLbqfsw8unRgAmLC4tpG9S3uouBneNqtVswkSxmTaOKF1jxd1eDvQZpt/cOnEAMCUN0wbw7tnTzvmh74Nz7ffS2c7sqi5e9E3Te7B7cKJAYBJb5A2JoYy5O96fXx521p3ISNOG6fOdmRRpQ0AOJPXpo1tc/KIyb61PpY3grTxitmOLKq0AQBn8hY9KW2pYWHTG7TWh5yR9KScONuRRZU2AOBM6o7bKOpJaadcN03huI1TelKMEgWAMzn3NSnpMI1616S4AhYAzuOk79t4ZQ9HMLu0Z+LNv28jWdRs78xYl82iiQGAEb65HACoS9oAAOqSNgCAuqQNAKAuaQMAqEvaAADqkjYAgLqkDQCgLmkDAKhL2gAA6pI2AIC6pA0AoC5pAwCoS9oAAOqSNgCAuqQNAKAuaQMAqEvaAADqkjYAgLqkDQCgLmkDAKhL2gAA6pI2AIC6pA0AoC5pAwCoa0na+P7x/vbm8cuv5OGfn27ub2/ubz/+nHjt78+Ptzf3tx9+/D5hIQGAK7Ygbfz75cP97c3X7/Gjxxhxk3kqM5m0AQB/ndK00RYw2n+rz//u9/v9t6+HDPH9ECaC8sb3j8Fkw7Tx68dqLqAAAO9CeW3j29coPfz6t00Mh76VQ+WjDxzSBgCw3++Xp40Pj7c395++/fzy4fE2rnb0/z78+C1tAABHxWnj9+fH25vHTx8PaWP/+/Njfljot6+HCaQNAGC/3y9IG98/3t/efP3y+Zg2jiM22n+fPv9Y3Tx++fZj1XamHNLG3D9pAwDevUWjRNvRoF3a6H8YpI2Ea1IA4G914jUpj18+SxsAQImF3yX6u7An5fhs31EyTBvHrpbJ7wQDAK7f69LGaG1D2gAAjqQNAKCu143b0JMCAMx5q9rGt/1+336LhrQBAPTqpo2Cf9IGALxzr0wbH78eO1Z+tfdJydySPk9tAwD+DgvTBgDAQtIGAFCXtAEA1CVtAAB1SRsAQF3SBgBQl7QBANQlbQAAdUkbAEBd0gYAUJe0AQDUJW0AAHUtShu7zXq92cWPbZvVatVsR1+zbVaD17zWbrOefM/hu8a/d+uxbQ6zSf//Rgs5tuK7zXo1ab3ZzU/UTbnkrbfN3ByjDbBtxjZ097nnPuDdZr1qtsli7DbrYMrB6sVvc5hD8oazO9LEimfmGC1GvGTxztKuZ/j6eEMensi+xR/Z2QAu3JK0MTyYdq1KchwODtaDdv7Vh9jdZr1ar3N5I9tArze7zIH98Mi2WTXb/sndZn3yws0348Mmddncy0PbVKNbOGVmdQ4fdLom2RAw0kKHDXn0zoPdIhs2MhtvGGjCX8NlC14frttw2dMVChYlXJ1+snaCwd6XvPcb7mwA16Y0bSStz/Ho2h1Pw5/rpo3uiJ897W6X4/iuh7crCgLNdtBcvK4mU97kz88oXNPx+XabOjydTks8ZZtiHzfv0eZM37PdWk0zWowZzyOZ39KPYbolj4JYsG3imls+q2SSUpsBgqfalBBvnzRtHJYw3WIjCfjNdzaAC7egthEdsQft1rppsk3cm6aN+BQ/KXm3D2Xauu1m051QhqkobB/CJT0pKcw35Se0KGOZaqz3Il383WYdn2THrxusaPgBHX/uHyooQUw/Hj4fTpCmjShLDIpng6UexKxBtS3cHNHM47Vvd/HdZr3ebMN9Kd+DmESIsZLO/u13NoDrUp42gkLwWI/z4RA61+qemDaCdrM/mmdHcHSRI21w+kZo26xWq/Vm03RNyW7TrNfR6exJSxktRa4RKRuOcVioJVsybDmHHQr5IQfrzXazDt8nyijDt9tMLXvc0ZKsSfee7c/J5g2HT6RpY71Os9Vo+5x9YjeaGsZLP1PZJnzt4Lk0VXSP1d3ZAC5ccdqIc0bQDubPScPX5WobSxrd7ngdFs+TMkt4Pn5oP7v/Bm/dzy3sLTguS7Ntz4FPGNla1kcxErUKKz5psxQPRciNgl36Dtn3zAyviGbXLUa2CJKMnSjYrsPaxj5Z9+N8lm3zoDdoYk/b7/fbZjg4ab1eD2Y4WNbDrNtYcXy8xs4GcHVK00ZygrjpD5VdBjkeeZM2MTmYntDsDU+Fh4/sNuvDwIH+GH+srW+3wTllf6zPLkm/Bq89/m+bYCNNTNKXEoaDJXKvGL8+ZPRsfGR45JSkF6FrY7v5jqeNqWa8W+WRCft+oLGH+0833RBzPRNphEhflJkw2lq5npRjtWzVjlnJVDmSTqnQ2+1sAJdvyTUp++hUM2gM6qaN7FKMzKSkZNI0w0Y3GPA3LNwvlSkBDArsg3GRwzY1t9pjHViD7BUMUZzY3PNF/LS2EaWNeGuvm6a8tpHsFuEnOpaVojHAmZ6Y7Ou7uedyQ24YSxpyxtZm0JOSG8iRffhtdzaAq7A8bRwb7D9X28gvReFM8qeO6bl5/gqHU7TV9HB+q+wwhanoMXE5Q67dykp6n6LlK5jlcUNsm3j8b2a46NLaxvGyj6iLYbQfKJuHcvFqrEcvHDCSmU/0cDykNnq8Hd2S7DVx2sh1Gdbc2QCuRmnaSAbQXWpto32PsIGLNdv9frfd7oKmMRkCMgwHhW99bDzSc+tBG5Y9pZ7YZsHDRZsu6C7KPtefp3cpoT/d7ro6olEFu816vdk0Yw1os91tms22YNxGtHnbz2CkMjO2zplLVMYvEZ7aaKO9GLlrZobfe1aWNl6xswG8Gyf3pCRnu/uwI3rGH04b+Qalr9Ksgqsm+mEF483QWG9G0BSvu+s8wqEZh3XPDCsYzrXslD6zcHMbuCxtRO+ZDoVJFrjPNnOjRJPz/cOibgaJY2TcRm6Z9snwiPb1mYGt/X4ZvTb9KLZNNEm7LIdRom3Q7sZbbIJ5jvSkBHNdurMBvB+vSBv90PuSZu6oam2jdBRk3Obsc4f8kfETBeWFqcrC6PIO36pkBMrhlZthMzq9dNm0sUnPtLuGNjMyM/wUt5mKx26zDq6XHQSpzLIGZY58bSPaHkF+yH9I4QZa5woo7YTRy4d1mHRsSTunTAfZSG1juJDFOxvA+7EwbfzlSvsyAICetAEA1CVtAAB1SRsAQF3SBgBQl7QBANQlbQAAdUkbAEBd0gYAUJe0AQDUJW0AAHVJGwBAXdIGAFCXtAEA1CVtAAB1SRsAQF3SBgBQl7QBANQlbQAAdUkbAEBd0gYAUJe0AQDUJW0AAHVJGwBAXYvSxq8fq5v72w8/frcP/P78ePvxZ/vbv18+3Ke/3nz9Xja37x/vb28ev/xKJvr56eb+9iac7XAmw1cBAJfjNWnj8OvN/adv+/1+v//29fYmSAzHib9++nB/exP863JDNLd8NPn9+bF9YS61tAswlWkAgDN7XW3jmDA+/Ph9jAtt8mifWn3+t61PdIHg3y8f7m8//Pjdz60tYLT/Vp//DWf+/ZA5suWNNnAcXwIAXJzStHEME92/T5+7usLg34cfv489I/efvg0zyjBthNFkv9/vf//6t40Rh0pJ++65wNHWP/SnAMBlWlLbOLbrYW1jv98Pqxr7fVvPePzyK6x/BNNn08aHx9ub+0/ffn758JjPMZl3309nEQDg3JakjUO5oihtBGM4grEXhy6Pn8O08fvz4+3N46ePh7SRDD5NZxvHmmDBjN4AgEtUnja6IZnzaaPrdnn88usQBb5+b0sj2bRxmObL52PaaMNK2Gvz+OXbj1W+gNEP+zB6AwAuT3HaiEsUX78PRnIE1YsfbfP/+OXXz09RAeP+07eRUaLtaNAubfQ/TKeNKJoobwDApSlNG8FlI4dYkIzDSGsbj6sP97c3j18+t1Hg48923OjsNSnHV5Wlje7ds8NHAICzW5Q2PjymV8Du99lxG9+/HbLF46ePj13OiIoiySjR/X7fFz+W9KQcp/z6fT8cjgoAXIIFV8C27X3RNSnJd4O21YvumzkK0kZBbeM42+6tD7HG6A0AuCTF4za+f/uZ+Xav/b4sbYQ54M3SRuYamehbOgCAS3Did4mODhHtrg2J0sYxBByGcJaO25jpSQn7UAIjXwoCAJzLK7+5fL8vqG0cJ0g7OMprG9+C6Q9pox3YkRsT6su+AOCi1E8bx/6OYdv/K+0ZKU0bU1HjYO7OsQDAn1M7bRz6ROJWP7hEJRpgkaaNj90XkoZfF5aODJ1aVBfEAsD5LUobAACLSRsAQF3SBgBQl7QBANQlbQAAdUkbAEBd0gYAUFdp2vgHAOCff/7555+KaeM/AOCvJ20AAHVJGwBAXdIGAFCXtAEA1CVtAAB1SRsAQF3SBgBQl7QBANQlbQAAdUkbAEBdZ08bzw+rzt3TS/UVBgD+sPOmjZenuz5iRL8AAO/FedPG88Nq9fDc/vbydBf8BgC8D2fuSXl5ums7UJ4fdKUAwHt09nEb/cgNZQ0AeJfOnDaeH7qYEfwIALwjZ00bybhQw0QB4D06/yjRPl/EY0YBgPfh3OM2Xp7ufN8GALxr504bAMB7J20AAHVJGwBAXdIGAFCXtAEA1CVtAAB1SRsAQF3SBgBQl7QBANQlbQAAdUkbAEBd0gYAUNclpI3Dndlm7v76/ODubQBwlc6dNg73nH9adK95d6YHgGty3rTx8nT38Pzf4vzw/KC8AQBX49y1jYNFaePl6U5pAwCuxzWljW7ohsIGAFyRa0obp04OAJzTVaYNAzcA4IpcY9p4ebpT2wCAq3HmtBF+i8ZqNfGtG4fv5DBuAwCuz2XUNgCA90vaAADqkjYAgLqkDQCgLmkDAKhL2gAA6pI2AIC6pA0AoC5pAwCoS9oAAOqSNgCAuqQNAKCuC7or29y91vpp3ZUNAK7I5dQ2Zu46//zQPvvydCdvAMD1uJy08d/zQ2GIEDcA4JpcTNp4ebqbKm2EZqogAMBFOX/a6IZjFJYrnh8M3ACAa3L+tNEpKVm8PN3JGgBwXS4obcwO3BA1AOAaXU7aeHm6m7soRdQAgCt03rTx8nRX+H0b4RdzHBgnCgDX4XJqGwDA+yRtAAB1SRsAQF3SBgBQl7QBANQlbQAAdUkbAEBd0gYAUJe0AQDUJW0AAHVJGwBAXdIGAFDXmdNGdFu2yRuzhbdlcytYALgi508by6PD84M7wALA9bjGtPHf84PyBgBcjStMGy9Pd0obAHA9zp82yodjdEM3FDYA4Ipc0DUpzw+lOcLADQC4IheUNhaECAM3AOB6XE7aeHm6Kwwb5VMCAOd33rRRPmxj0QAPAOCCXE5tAwB4n6QNAKAuaQMAqEvaAADqkjYAgLqkDQCgLmkDAKhL2gAA6pI2AIC6pA0AoC5pAwCoS9oAAOo6c9qIbrZWcru1wwvclg0Arsf508aS5PDydLd6eHiQNgDgilxT2nh5ulvdPb08SxsAcE2uJ20cs8Z//0kbAHBVzp82Ckdt9BlD2gCAq3JB16Q8P4wHjjBhSBsAcFUuKG389/ywWj08jz0zkJ8UALgwl5M2Xp7uyhKE2gYAXJXzpo3yYRsBaQMArsrl1DYAgPdJ2gAA6pI2AIC6pA0AoC5pAwCoS9oAAOqSNgCAuqQNAKAuaQMAqEvaAADqkjYAgLqkDQCgrjOnjei2bPM3Zusnd182ALgW508bpbmh+I70AMBFuZq04T7zAHClriVtPD+s7p6eHkq7XACAi3H+tFE2auP5YRX0ozw/6FQBgGtxQdekPD9MBI6kI0W/CgBcjQtKG5MVi+Q5aQMArsblpI2Za07CysfL052wAQDX4rxpo3jYRjKxqAEA1+NyahsAwPskbQAAdUkbAEBd0gYAUJe0AQDUJW0AAHVJGwBAXdIGAFCXtAEA1CVtAAB1SRsAQF3SBgBQ19nTxvNDya3Wotu3uTEbAFyTM6eN54f2JvNL7iL//DB1b3oA4KKcvbbRKY8bzw8qGwBwPS4nbZQWLF6e7hQ2AOCKXEraeH4oHIqhsAEAV+Yi0sbL011h1lgyugMAuAjnTxvlUcPwUAC4RudOG8U9KP8pbADAdTpv2ui/bKM1Xrl4ebpT2ACAK3Tu2gYA8N5JGwBAXdIGAFCXtAEA1CVtAAB1SRsAQF3SBgBQl7QBANQlbQAAdUkbAEBd0gYAUJe0AQDUdfa00d+Ybe72ruEt3NwKFgCuxpnTxvNDe1vXmdvJR0+79TwAXJGz1zY60xHi+SG83fzL052bzwPAlbictBHniYGXp7u2A+X5QVcKAFyPS0kbRQmiHbmhrAEAV+Qi0kZQtxj1/NDFjOBHAODinT9tlESNdFCHYaIAcD3OnTZKx2DE082M8QAALsh500b4FRpzQzJenu583wYAXKFz1zYAgPdO2gAA6pI2AIC6pA0AoC5pAwCoS9oAAOqSCFdwGQAAAEpJREFUNgCAuqQNAKAuaQMAqEvaAADqkjYAgLrqpg0AgH/qpQ0AgNNIGwBAXdIGAFCXtAEA1CVtAAB1SRsAQF3SBgBQl7QBANT1/+/1CLk90YVwAAAAAElFTkSuQmCC" alt="" />

-------------------------------

无论哪一个坏掉了都能连通意味着不能存在只有一根线(度为1)的基站,所以统计一下度为1的点,然后为了节省将它们两两相连,如果是奇数的话剩下的那个没配对的就随便连连喽~

AC代码:

 import java.util.Scanner;

 public class Main {

     public static void main(String[] args) {

         Scanner sc=new Scanner(System.in);
while(sc.hasNextInt()){
int n=sc.nextInt();
int x[]=new int[n+1]; for(int i=0;i<n-1;i++){
int u=sc.nextInt();
int v=sc.nextInt();
x[u]++;
x[v]++;
} int ans=0;
for(int i=1;i<x.length;i++){
if(x[i]==1) ans++;
} System.out.println((ans+1)/2);
}
} }

题目来源: http://acm.nyist.net/JudgeOnline/problem.php?pid=170

上一篇:linux下修改环境变量


下一篇:HrbustOJ 1564 螺旋矩阵