Description
In how many ways can you tile a 3xn rectangle with 2x1 dominoes?
Here is a sample tiling of a 3x12 rectangle.
Input
Input consists of several test cases followed by a line containing -1. Each test case is a line containing an integer 0 <= n <= 30.
Output
For each test case, output one integer number giving the number of possible tilings.
Sample Input
2
8
12
-1
Sample Output
3
153
2131
题解
看了别人的博客都是递推啥的,
之前自己推了半天推不出来,智商捉鸡,就放着没做了
直到我做了POJ 2411后
再回来看这题,就是把宽度设为3而已...
#include <iostream>
#include <cstdio> //EOF,NULL
#include <cstring> //memset
#include <cmath> //ceil,floor,exp,log(e),log10(10),hypot(sqrt(x^2+y^2)),cbrt(sqrt(x^2+y^2+z^2))
#include <algorithm> //fill,reverse,next_permutation,__gcd,
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <map>
using namespace std;
#define rep(i, a, n) for (int i = a; i < n; ++i)
#define sca(x) scanf("%d", &x)
#define sca2(x, y) scanf("%d%d", &x, &y)
#define sca3(x, y, z) scanf("%d%d%d", &x, &y, &z)
#define pri(x) printf("%d\n", x)
#define pb push_back
#define mp make_pair
typedef pair<int, int> P;
typedef long long ll;
const ll inf = ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9+;
const int maxn = ;
const int N = 1e4 + ;
int t, n, m;
int cnt, ans, ed;
ll dp[][<<];
int path[][];
int h, w;
void dfs(int l, int now, int pre)
{
if (l > w) {
return;
}
if (l == w) {
path[cnt][] = pre;
path[cnt++][] = now;
return;
}
dfs(l + , (now << )|, (pre << )|); // 竖放,当前行为1,上一行为0
dfs(l + , (now << )|, (pre << )); // 横放 当前行和上一行都为11
dfs(l + , (now << ), (pre << )|); //不放,上一行为1,当前行为0
} int main()
{
while (sca(h) && h != -)
{
w = ;
cnt = ;
dfs(, , );
memset(dp, , sizeof dp);
ed = ( << w) - ;
dp[][ed] = ;
for (int i = ; i < h; i++)
{
for (int j = ; j < cnt; j++)
{
dp[i + ][path[j][]] += dp[i][path[j][]];
}
}
printf("%lld\n", dp[h][ed]);
}
return ();
}