Hive 分析函数lead、lag实例应用

Hive的分析函数又叫窗口函数,在oracle中就有这样的分析函数,主要用来做数据统计分析的。

Lag和Lead分析函数可以在同一次查询中取出同一字段的前N行的数据(Lag)和后N行的数据(Lead)作为独立的列。
这种操作可以代替表的自联接,并且LAG和LEAD有更高的效率,其中over()表示当前查询的结果集对象,括号里面的语句则表示对这个结果集进行处理。
 

函数介绍

LAG

LAG(col,n,DEFAULT) 用于统计窗口内往上第n行值
参数1为列名,参数2为往上第n行(可选,默认为1),参数3为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)

LEAD

与LAG相反
LEAD(col,n,DEFAULT) 用于统计窗口内往下第n行值
参数1为列名,参数2为往下第n行(可选,默认为1),参数3为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)

 

场景

问题

用户Peter在浏览网页,在某个时刻,Peter点进了某个页面,过一段时间后,Peter又进入了另外一个页面,如此反复,那怎么去统计Peter在某个特定网页的停留时间呢,又或是怎么统计某个网页用户停留的总时间呢?

数据准备

现在用户的行为都被采集了,处理转换到hive数据表,表结构如下:
  1. create table test.user_log(
  2. userid string,
  3. time string,
  4. url string
  5. ) row format delimited fields terminated by ',';

记录数据:

  1. +------------------+----------------------+---------------+--+
  2. | user_log.userid  |    user_log.time     | user_log.url  |
  3. +------------------+----------------------+---------------+--+
  4. | Peter            | 2015-10-12 01:10:00  | url1          |
  5. | Peter            | 2015-10-12 01:15:10  | url2          |
  6. | Peter            | 2015-10-12 01:16:40  | url3          |
  7. | Peter            | 2015-10-12 02:13:00  | url4          |
  8. | Peter            | 2015-10-12 03:14:30  | url5          |
  9. | Marry            | 2015-11-12 01:10:00  | url1          |
  10. | Marry            | 2015-11-12 01:15:10  | url2          |
  11. | Marry            | 2015-11-12 01:16:40  | url3          |
  12. | Marry            | 2015-11-12 02:13:00  | url4          |
  13. | Marry            | 2015-11-12 03:14:30  | url5          |
  14. +------------------+----------------------+---------------+--+

分析步骤

获取用户在某个页面停留的起始与结束时间

  1. select userid,
  2. time stime,
  3. lead(time) over(partition by userid order by time) etime,
  4. url
  5. from test.user_log;

结果:

  1. +---------+----------------------+----------------------+-------+--+
  2. | userid  |        stime         |        etime         |  url  |
  3. +---------+----------------------+----------------------+-------+--+
  4. | Marry   | 2015-11-12 01:10:00  | 2015-11-12 01:15:10  | url1  |
  5. | Marry   | 2015-11-12 01:15:10  | 2015-11-12 01:16:40  | url2  |
  6. | Marry   | 2015-11-12 01:16:40  | 2015-11-12 02:13:00  | url3  |
  7. | Marry   | 2015-11-12 02:13:00  | 2015-11-12 03:14:30  | url4  |
  8. | Marry   | 2015-11-12 03:14:30  | NULL                 | url5  |
  9. | Peter   | 2015-10-12 01:10:00  | 2015-10-12 01:15:10  | url1  |
  10. | Peter   | 2015-10-12 01:15:10  | 2015-10-12 01:16:40  | url2  |
  11. | Peter   | 2015-10-12 01:16:40  | 2015-10-12 02:13:00  | url3  |
  12. | Peter   | 2015-10-12 02:13:00  | 2015-10-12 03:14:30  | url4  |
  13. | Peter   | 2015-10-12 03:14:30  | NULL                 | url5  |
  14. +---------+----------------------+----------------------+-------+--+

计算用户在页面停留的时间间隔(实际分析当中,这里要做数据清洗工作,如果一个用户停留了4、5个小时,那这条记录肯定是不可取的。)

  1. select userid,
  2. time stime,
  3. lead(time) over(partition by userid order by time) etime,
  4. UNIX_TIMESTAMP(lead(time) over(partition by userid order by time),'yyyy-MM-dd HH:mm:ss')- UNIX_TIMESTAMP(time,'yyyy-MM-dd HH:mm:ss') period,
  5. url
  6. from test.user_log;

结果:

  1. +---------+----------------------+----------------------+---------+-------+--+
  2. | userid  |        stime         |        etime         | period  |  url  |
  3. +---------+----------------------+----------------------+---------+-------+--+
  4. | Marry   | 2015-11-12 01:10:00  | 2015-11-12 01:15:10  | 310     | url1  |
  5. | Marry   | 2015-11-12 01:15:10  | 2015-11-12 01:16:40  | 90      | url2  |
  6. | Marry   | 2015-11-12 01:16:40  | 2015-11-12 02:13:00  | 3380    | url3  |
  7. | Marry   | 2015-11-12 02:13:00  | 2015-11-12 03:14:30  | 3690    | url4  |
  8. | Marry   | 2015-11-12 03:14:30  | NULL                 | NULL    | url5  |
  9. | Peter   | 2015-10-12 01:10:00  | 2015-10-12 01:15:10  | 310     | url1  |
  10. | Peter   | 2015-10-12 01:15:10  | 2015-10-12 01:16:40  | 90      | url2  |
  11. | Peter   | 2015-10-12 01:16:40  | 2015-10-12 02:13:00  | 3380    | url3  |
  12. | Peter   | 2015-10-12 02:13:00  | 2015-10-12 03:14:30  | 3690    | url4  |
  13. | Peter   | 2015-10-12 03:14:30  | NULL                 | NULL    | url5  |
  14. +---------+----------------------+----------------------+---------+-------+--+

计算每个页面停留的总时间,某个用户访问某个页面的总时间

  1. select nvl(url,'-1') url,
  2. nvl(userid,'-1') userid,
  3. sum(period) totol_peroid from (
  4. select userid,
  5. time stime,
  6. lead(time) over(partition by userid order by time) etime,
  7. UNIX_TIMESTAMP(lead(time) over(partition by userid order by time),'yyyy-MM-dd HH:mm:ss')- UNIX_TIMESTAMP(time,'yyyy-MM-dd HH:mm:ss') period,
  8. url
  9. from test.user_log
  10. ) a group by url, userid with rollup;

结果:

  1. +-------+---------+---------------+--+
  2. |  url  | userid  | totol_peroid  |
  3. +-------+---------+---------------+--+
  4. | -1    | -1      | 14940         |
  5. | url1  | -1      | 620           |
  6. | url1  | Marry   | 310           |
  7. | url1  | Peter   | 310           |
  8. | url2  | -1      | 180           |
  9. | url2  | Marry   | 90            |
  10. | url2  | Peter   | 90            |
  11. | url3  | -1      | 6760          |
  12. | url3  | Marry   | 3380          |
  13. | url3  | Peter   | 3380          |
  14. | url4  | -1      | 7380          |
  15. | url4  | Marry   | 3690          |
  16. | url4  | Peter   | 3690          |
  17. | url5  | -1      | NULL          |
  18. | url5  | Marry   | NULL          |
  19. | url5  | Peter   | NULL          |
  20. +-------+---------+---------------+--+
上一篇:Struts2 学习笔记


下一篇:获取指定日期相关DATENAME和DATEPART数据