在 Flink 算子中使用多线程如何保证不丢数据?

简介: 本人通过分析痛点、同步批量请求优化为异步请求、多线程 Client 模式、Flink 算子内多线程实现以及总结四部分帮助大家理解 Flink 中使用多线程的优化及在 Flink 算子中使用多线程如何保证不丢数据。

分析痛点

笔者线上有一个 Flink 任务消费 Kafka 数据,将数据转换后,在 Flink 的 Sink 算子内部调用第三方 api 将数据上报到第三方的数据分析平台。这里使用批量同步 api,即:每 50 条数据请求一次第三方接口,可以通过批量 api 来提高请求效率。由于调用的外网接口,所以每次调用 api 比较耗时。假如批次大小为 50,且请求接口的平均响应时间为 50ms,使用同步 api,因此第一次请求响应以后才会发起第二次请求。请求示意图如下所示:

在 Flink 算子中使用多线程如何保证不丢数据?

 

平均下来,每 50 ms 向第三方服务器发送 50 条数据,也就是每个并行度 1 秒钟处理 1000 条数据。假设当前业务数据量为每秒 10 万条数据,那么 Flink Sink 算子的并行度需要设置为 100 才能正常处理线上数据。从 Flink 资源分配来讲,100 个并行度需要申请 100 颗 CPU,因此当前 Flink 任务需要占用集群中 100 颗 CPU 以及不少的内存资源。请问此时 Flink Sink 算子的 CPU 或者内存压力大吗?

上述请求示意图可以看出 Flink 任务发出请求到响应这 50ms 期间,Flink Sink 算子只是在 wait,并没有实质性的工作。因此,CPU 使用率肯定很低,当前任务的瓶颈明显在网络 IO。最后结论是 Flink 任务申请了 100 颗 CPU,导致 yarn 或其他资源调度框架没有资源了,但是这 100 颗 CPU 的使用率并不高,这里能不能优化通过提高 CPU 的使用率,从而少申请一些 CPU 呢?

同步批量请求优化为异步请求

首先可以想到的是将同步请求改为异步请求,使得任务不会阻塞在网络请求这一环节,请求示意图如下所示。

在 Flink 算子中使用多线程如何保证不丢数据?

 

异步请求相比同步请求而言,优化点在于每次发出请求时,不需要等待请求响应后再发送下一次请求,而是当下一批次的 50 条数据准备好之后,直接向第三方服务器发送请求。每次发送请求后,Flink Sink 算子的客户端需要注册监听器来等待响应,当响应失败时需要做重试或者回滚策略。

通过异步请求的方式,可以优化网络瓶颈,假如 Flink Sink 算子的单个并行度平均 10ms 接收到 50 条数据,那么使用异步 api 的方式平均 1 秒可以处理 5000 条数据,整个 Flink 任务的性能提高了 5 倍。对于每秒 10 万数据量的业务,这里仅需要申请 20 颗 CPU 资源即可。关于异步 api 的具体使用,可以根据场景具体设计,这里不详细讨论。

多线程 Client 模式

对于一些不支持异步 api 的场景,可能并不能使用上述优化方案,同样,为了提高 CPU 使用率,可以在 Flink Sink 端使用多线程的方案。如下图所示,可以在 Flink Sink 端开启 5 个请求第三方服务器的 Client 线程:Client1、Client2、Client3、Client4、Client5。

这五个线程内分别使用同步批量请求的 Client,单个 Client 还是保持 50 条记录为一个批次,即 50 条记录请求一次第三方 api。请求第三方 api 耗时主要在于网络 IO(性能瓶颈在于网络请求延迟),因此如果变成 5 个 Client 线程,每个 Client 的单次请求平均耗时还能保持在 50ms,除非网络请求已经达到了带宽上限或整个任务又遇到其他瓶颈。所以,多线程模式下使用同步批量 api 也能将请求效率提升 5 倍。

在 Flink 算子中使用多线程如何保证不丢数据?

 

说明:多线程的方案,不仅限于请求第三方接口,对于非 CPU 密集型的任务也可以使用该方案,在降低 CPU 数量的同时,单个 CPU 承担多个线程的工作,从而提高 CPU 利用率。例如:请求 HBase 的任务或磁盘 IO 是瓶颈的任务,可以降低任务的并行度,使得每个并行度内处理多个线程。

Flink 算子内多线程实现

Sink 算子的单个并行度内现在有 5 个 Client 用于消费数据,但 Sink 算子的数据都来自于上游算子。如下图所示,一个简单的实现方式是 Sink 算子接收到上游数据后通过轮循或随机的策略将数据分发给 5 个 Client 线程。

在 Flink 算子中使用多线程如何保证不丢数据?

 

但是轮循或者随机策略会存在问题,假如 5 个 Client 中 Client3 线程消费较慢,会导致给 Client3 分发数据时被阻塞,从而使得其他正常消费的线程 Client1、2、4、5 也被分发不到数据。

为了解决上述问题,可以在 Sink 算子内申请一个数据缓冲队列,队列有先进先出(FIFO)的特性。Sink 算子接收到的数据直接插入到队列尾部,五个 Client 线程不断地从队首取数据并消费,即:Sink 算子先接收的数据 Client 先消费,后接收的数据 Client 后消费。

  • 若队列一直是满的,说明 Client 线程消费较慢、Sink 算子上游生产数据较快。
  • 若队列一直为空,说明 Client 线程消费较快、Sink 算子的上游生产数据较慢。

五个线程共用同一个队列完美地解决了单个线程消费慢的问题,当 Client3 线程阻塞时,不影响其他线程从队列中消费数据。这里使用队列还起到了削峰填谷的作用。

在 Flink 算子中使用多线程如何保证不丢数据?

 

文章进行了部分删减,完整内容请点击:https://developer.aliyun.com/article/740572?utm_content=g_1000096527

上一篇:POJ1273【网络流】


下一篇:图解堆排序