题意
你有一个森林,你需要支持两个操作
- 查询两个结点路径上权值第\(k\)小
- 两个点之间连一条边
强制在线,结点数\(\leq 8\times 10^4\)
题解
如果可以离线,这就是一个主席树板子题,每个点开一个主席树表示树上的前缀和。询问的时候拿出来\(4\)棵主席树,\(x,y,lca(x,y)\)和\(fa(lca(x,y))\),然后每次用\(x,y\)的信息减去\(lca(x,y),fa(lca(x,y))\)的信息就能得到这条链的信息
这里要求在线,可以考虑启发式合并,比如连接\(x,y\),若\(y\)连通块比较小,就把\(y\)的那个连通块连做\(x\)的儿子,显然这样\(y\)的连通块父子关系会改变,需要重新dfs求倍增数组和主席树。启发式合并\(O(n \log n)\),主席树带一个\(\log\),复杂度应该就是\(O(n \log^2n)\)
注意一下主席树不要反复新建结点,一个结点建过了第二次再建直接把它原来的信息覆盖了就行。这样空间复杂度就是\(O(n\log n)\)了qwq
#include <algorithm>
#include <cstdio>
#include <vector>
using namespace std;
const int N = 8e4 + 10;
int n, m, q, p, l;
int a[N], b[N], f[N][20], sz[N], d[N];
int id, T[N], ls[N * 20], rs[N * 20], s[N * 20];
vector<int> G[N];
void build(int &rt, int l, int r) {
rt = ++ id; s[rt] = 0;
if(l < r) {
int mid = (l + r) >> 1;
build(ls[rt], l, mid);
build(rs[rt], mid + 1, r);;
}
}
void update(int &rt, int pre, int l, int r, int x) {
if(!rt) rt = ++ id; s[rt] = s[pre] + 1;
if(l == r) return ;
int mid = (l + r) >> 1;
if(x <= mid) rs[rt] = rs[pre], update(ls[rt], ls[pre], l, mid, x);
else ls[rt] = ls[pre], update(rs[rt], rs[pre], mid + 1, r, x);
}
int query(int u, int v, int x, int y, int l, int r, int k) {
if(l == r) return l;
int sum = s[ls[u]] + s[ls[v]] - s[ls[x]] - s[ls[y]];
int mid = (l + r) >> 1;
if(k <= sum) return query(ls[u], ls[v], ls[x], ls[y], l, mid, k);
return query(rs[u], rs[v], rs[x], rs[y], mid + 1, r, k - sum);
}
void dfs(int u, int fa = 0) {
f[u][0] = fa; sz[u] = 1; d[u] = d[fa] + 1;
for(int i = 1; i <= l; i ++)
f[u][i] = f[f[u][i - 1]][i - 1];
update(T[u], T[fa], 1, p, a[u]);
for(int i = 0; i < G[u].size(); i ++) {
int v = G[u][i];
if(v != fa) {
dfs(v, u); sz[u] += sz[v];
}
}
}
int find(int u) {
for(int i = l; i >= 0; i --)
if(f[u][i]) u = f[u][i];
return u;
}
int lca(int u, int v) {
if(d[u] < d[v]) swap(u, v);
int x = d[u] - d[v];
for(int i = l; i >= 0; i --)
if(x >> i & 1) u = f[u][i];
if(u == v) return u;
for(int i = l; i >= 0; i --)
if(f[u][i] != f[v][i]) {
u = f[u][i]; v = f[v][i];
}
return f[u][0];
}
int main() {
scanf("%*d%d%d%d", &n, &m, &q);
for(l = 1; (1 << l) <= n; l ++) ;
for(int i = 1; i <= n; i ++) {
scanf("%d", a + i); b[i] = a[i];
}
sort(b + 1, b + n + 1);
p = unique(b + 1, b + n + 1) - b - 1;
for(int i = 1; i <= n; i ++)
a[i] = lower_bound(b + 1, b + p + 1, a[i]) - b;
int u, v, k;
for(int i = 1; i <= m; i ++) {
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
build(T[0], 1, p);
for(int i = 1; i <= n; i ++)
if(!sz[i]) dfs(i);
char op[4];
for(int la = 0, i = 1; i <= q; i ++) {
scanf("%s%d%d", op, &u, &v);
u ^= la; v ^= la;
if(* op == 'Q') {
scanf("%d", &k); k ^= la;
int t = lca(u, v);
k = query(T[u], T[v], T[t], T[f[t][0]], 1, p, k);
printf("%d\n", la = b[k]);
}
if(* op == 'L') {
G[u].push_back(v);
G[v].push_back(u);
int x = find(u), y = find(v);
if(sz[x] < sz[y]) {
swap(u, v); swap(x, y);
}
dfs(v, u); sz[x] += sz[v];
}
}
return 0;
}