mfc 调用Windows的API函数实现同步异步串口通信(源码)

在工业控制中,工控机(一般都基于Windows平台)经常需要与智能仪表通过串口进行通信。串口通信方便易行,应用广泛。

一般情况下,工控机和各智能仪表通过RS485总线进行通信。RS485的通信方式是半双工的,只能由作为主节点的工控PC机依次轮询网络上的各智能控制单元子节点。每次通信都是由PC机通过串口向智能控制单元发布命令,智能控制单元在接收到正确的命令后作出应答。

  在Win32下,可以使用两种编程方式实现串口通信,其一是使用ActiveX控件,这种方法程序简单,但欠灵活。其二是调用Windows的API函数,这种方法可以清楚地掌握串口通信的机制,并且*灵活。本文我们只介绍API串口通信部分。

  串口的操作可以有两种操作方式:同步操作方式和重叠操作方式(又称为异步操作方式)。同步操作时,API函数会阻塞直到操作完成以后才能返回(在多线程方式中,虽然不会阻塞主线程,但是仍然会阻塞监听线程);而重叠操作方式,API函数会立即返回,操作在后台进行,避免线程的阻塞。



无论那种操作方式,一般都通过四个步骤来完成:

(1) 打开串口

(2) 配置串口

(3) 读写串口

(4) 关闭串口



(1) 打开串口



  Win32系统把文件的概念进行了扩展。无论是文件、通信设备、命名管道、邮件槽、磁盘、还是控制台,都是用API函数CreateFile来打开或创建的。该函数的原型为:



HANDLE CreateFile( LPCTSTR lpFileName,

                  DWORD dwDesiredAccess,

                  DWORD dwShareMode,

                  LPSECURITY_ATTRIBUTES lpSecurityAttributes,

                  DWORD dwCreationDistribution,

DWORD dwFlagsAndAttributes,

HANDLE hTemplateFile);



    * lpFileName:将要打开的串口逻辑名,如“COM1”;

    * dwDesiredAccess:指定串口访问的类型,可以是读取、写入或二者并列;

    * dwShareMode:指定共享属性,由于串口不能共享,该参数必须置为0;

    * lpSecurityAttributes:引用安全性属性结构,缺省值为NULL;

    * dwCreationDistribution:创建标志,对串口操作该参数必须置为OPEN_EXISTING;

    * dwFlagsAndAttributes:属性描述,用于指定该串口是否进行异步操作,该值为FILE_FLAG_OVERLAPPED,表示使用异步的I/O;该值为0,表示同步I/O操作;

    * hTemplateFile:对串口而言该参数必须置为NULL;



同步I/O方式打开串口的示例代码:



HANDLE hCom;  //全局变量,串口句柄

hCom=CreateFile("COM1",//COM1口

GENERIC_READ|GENERIC_WRITE, //允许读和写

0, //独占方式

NULL,

OPEN_EXISTING, //打开而不是创建

0, //同步方式

NULL);

if(hCom==(HANDLE)-1)

{

AfxMessageBox("打开COM失败!");

return FALSE;

}

return TRUE;





重叠I/O打开串口的示例代码:



HANDLE hCom;  //全局变量,串口句柄

hCom =CreateFile("COM1",  //COM1口

             GENERIC_READ|GENERIC_WRITE, //允许读和写

             0,  //独占方式

             NULL,

             OPEN_EXISTING,  //打开而不是创建

             FILE_ATTRIBUTE_NORMAL|FILE_FLAG_OVERLAPPED, //重叠方式

             NULL);

if(hCom ==INVALID_HANDLE_VALUE)

{

AfxMessageBox("打开COM失败!");

return FALSE;

}

   return TRUE;



(2)、配置串口



  在打开通讯设备句柄后,常常需要对串口进行一些初始化配置工作。这需要通过一个DCB结构来进行。DCB结构包含了诸如波特率、数据位数、奇偶校验和停止位数等信息。在查询或配置串口的属性时,都要用DCB结构来作为缓冲区。

  一般用CreateFile打开串口后,可以调用GetCommState函数来获取串口的初始配置。要修改串口的配置,应该先修改DCB结构,然后再调用SetCommState函数设置串口。

  DCB结构包含了串口的各项参数设置,下面仅介绍几个该结构常用的变量:



typedef struct _DCB{

   ………

   //波特率,指定通信设备的传输速率。这个成员可以是实际波特率值或者下面的常量值之一:

   DWORD BaudRate; 

CBR_110,CBR_300,CBR_600,CBR_1200,CBR_2400,CBR_4800,CBR_9600,CBR_19200, CBR_38400, 

CBR_56000, CBR_57600, CBR_115200, CBR_128000, CBR_256000, CBR_14400



DWORD fParity; // 指定奇偶校验使能。若此成员为1,允许奇偶校验检查 

   …

BYTE ByteSize; // 通信字节位数,4—8

BYTE Parity; //指定奇偶校验方法。此成员可以有下列值:

EVENPARITY 偶校验     NOPARITY 无校验

MARKPARITY 标记校验   ODDPARITY 奇校验

BYTE StopBits; //指定停止位的位数。此成员可以有下列值:

ONESTOPBIT 1位停止位   TWOSTOPBITS 2位停止位

ONE5STOPBITS   1.5位停止位

   ………

  } DCB;

winbase.h文件中定义了以上用到的常量。如下:

#define NOPARITY            0

#define ODDPARITY           1

#define EVENPARITY          2

#define ONESTOPBIT          0

#define ONE5STOPBITS        1

#define TWOSTOPBITS         2

#define CBR_110             110

#define CBR_300             300

#define CBR_600             600

#define CBR_1200            1200

#define CBR_2400            2400

#define CBR_4800            4800

#define CBR_9600            9600

#define CBR_14400           14400

#define CBR_19200           19200

#define CBR_38400           38400

#define CBR_56000           56000

#define CBR_57600           57600

#define CBR_115200          115200

#define CBR_128000          128000

#define CBR_256000          256000



GetCommState函数可以获得COM口的设备控制块,从而获得相关参数:



BOOL GetCommState(

   HANDLE hFile, //标识通讯端口的句柄

   LPDCB lpDCB //指向一个设备控制块(DCB结构)的指针

  );

SetCommState函数设置COM口的设备控制块:

BOOL SetCommState(

   HANDLE hFile, 

   LPDCB lpDCB 

  );



  除了在BCD中的设置外,程序一般还需要设置I/O缓冲区的大小和超时。Windows用I/O缓冲区来暂存串口输入和输出的数据。如果通信的速率较高,则应该设置较大的缓冲区。调用SetupComm函数可以设置串行口的输入和输出缓冲区的大小。



BOOL SetupComm(



    HANDLE hFile, // 通信设备的句柄 

    DWORD dwInQueue, // 输入缓冲区的大小(字节数) 

    DWORD dwOutQueue // 输出缓冲区的大小(字节数)

   );



  在用ReadFile和WriteFile读写串行口时,需要考虑超时问题。超时的作用是在指定的时间内没有读入或发送指定数量的字符,ReadFile或WriteFile的操作仍然会结束。

  要查询当前的超时设置应调用GetCommTimeouts函数,该函数会填充一个COMMTIMEOUTS结构。调用SetCommTimeouts可以用某一个COMMTIMEOUTS结构的内容来设置超时。

  读写串口的超时有两种:间隔超时和总超时。间隔超时是指在接收时两个字符之间的最大时延。总超时是指读写操作总共花费的最大时间。写操作只支持总超时,而读操作两种超时均支持。用COMMTIMEOUTS结构可以规定读写操作的超时。

COMMTIMEOUTS结构的定义为:



typedef struct _COMMTIMEOUTS {   

    DWORD ReadIntervalTimeout; //读间隔超时

    DWORD ReadTotalTimeoutMultiplier; //读时间系数

    DWORD ReadTotalTimeoutConstant; //读时间常量

    DWORD WriteTotalTimeoutMultiplier; // 写时间系数

    DWORD WriteTotalTimeoutConstant; //写时间常量

} COMMTIMEOUTS,*LPCOMMTIMEOUTS;



COMMTIMEOUTS结构的成员都以毫秒为单位。总超时的计算公式是:

总超时=时间系数×要求读/写的字符数+时间常量

例如,要读入10个字符,那么读操作的总超时的计算公式为:

读总超时=ReadTotalTimeoutMultiplier×10+ReadTotalTimeoutConstant

可以看出:间隔超时和总超时的设置是不相关的,这可以方便通信程序灵活地设置各种超时。



如果所有写超时参数均为0,那么就不使用写超时。如果ReadIntervalTimeout为0,那么就不使用读间隔超时。如果ReadTotalTimeoutMultiplier 和 ReadTotalTimeoutConstant 都为0,则不使用读总超时。如果读间隔超时被设置成MAXDWORD并且读时间系数和读时间常量都为0,那么在读一次输入缓冲区的内容后读操作就立即返回,而不管是否读入了要求的字符。

  在用重叠方式读写串口时,虽然ReadFile和WriteFile在完成操作以前就可能返回,但超时仍然是起作用的。在这种情况下,超时规定的是操作的完成时间,而不是ReadFile和WriteFile的返回时间。

配置串口的示例代码:



SetupComm(hCom,1024,1024); //输入缓冲区和输出缓冲区的大小都是1024



COMMTIMEOUTS TimeOuts;

//设定读超时

TimeOuts.ReadIntervalTimeout=1000;

TimeOuts.ReadTotalTimeoutMultiplier=500;

TimeOuts.ReadTotalTimeoutConstant=5000;

//设定写超时

TimeOuts.WriteTotalTimeoutMultiplier=500;

TimeOuts.WriteTotalTimeoutConstant=2000;

SetCommTimeouts(hCom,&TimeOuts); //设置超时



DCB dcb;

GetCommState(hCom,&dcb);

dcb.BaudRate=9600; //波特率为9600

dcb.ByteSize=8; //每个字节有8位

dcb.Parity=NOPARITY; //无奇偶校验位

dcb.StopBits=TWOSTOPBITS; //两个停止位

SetCommState(hCom,&dcb);



PurgeComm(hCom,PURGE_TXCLEAR|PURGE_RXCLEAR);



在读写串口之前,还要用PurgeComm()函数清空缓冲区,该函数原型:



BOOL PurgeComm(



    HANDLE hFile, //串口句柄

    DWORD dwFlags // 需要完成的操作

   ); 



参数dwFlags指定要完成的操作,可以是下列值的组合:



PURGE_TXABORT   中断所有写操作并立即返回,即使写操作还没有完成。

PURGE_RXABORT   中断所有读操作并立即返回,即使读操作还没有完成。

PURGE_TXCLEAR   清除输出缓冲区

PURGE_RXCLEAR   清除输入缓冲区

(3)、读写串口



我们使用ReadFile和WriteFile读写串口,下面是两个函数的声明:



BOOL ReadFile(



    HANDLE hFile, //串口的句柄

    

    // 读入的数据存储的地址,

    // 即读入的数据将存储在以该指针的值为首地址的一片内存区

    LPVOID lpBuffer, 

    DWORD nNumberOfBytesToRead, // 要读入的数据的字节数

    

    // 指向一个DWORD数值,该数值返回读操作实际读入的字节数

    LPDWORD lpNumberOfBytesRead, 

    

    // 重叠操作时,该参数指向一个OVERLAPPED结构,同步操作时,该参数为NULL。

    LPOVERLAPPED lpOverlapped  

   ); 

BOOL WriteFile(



    HANDLE hFile, //串口的句柄

    

    // 写入的数据存储的地址,

    // 即以该指针的值为首地址的nNumberOfBytesToWrite

    // 个字节的数据将要写入串口的发送数据缓冲区。

    LPCVOID lpBuffer, 

    

    DWORD nNumberOfBytesToWrite, //要写入的数据的字节数

    

    // 指向指向一个DWORD数值,该数值返回实际写入的字节数

    LPDWORD lpNumberOfBytesWritten, 

    

    // 重叠操作时,该参数指向一个OVERLAPPED结构,

    // 同步操作时,该参数为NULL。

    LPOVERLAPPED lpOverlapped  

   );



  在用ReadFile和WriteFile读写串口时,既可以同步执行,也可以重叠执行。在同步执行时,函数直到操作完成后才返回。这意味着同步执行时线程会被阻塞,从而导致效率下降。在重叠执行时,即使操作还未完成,这两个函数也会立即返回,费时的I/O操作在后台进行。

  ReadFile和WriteFile函数是同步还是异步由CreateFile函数决定,如果在调用CreateFile创建句柄时指定了 FILE_FLAG_OVERLAPPED标志,那么调用ReadFile和WriteFile对该句柄进行的操作就应该是重叠的;如果未指定重叠标志,则读写操作应该是同步的。ReadFile和WriteFile函数的同步或者异步应该和CreateFile函数相一致。

  ReadFile函数只要在串口输入缓冲区中读入指定数量的字符,就算完成操作。而WriteFile函数不但要把指定数量的字符拷入到输出缓冲区,而且要等这些字符从串行口送出去后才算完成操作。

  如果操作成功,这两个函数都返回TRUE。需要注意的是,当ReadFile和WriteFile返回FALSE时,不一定就是操作失败,线程应该调用GetLastError函数分析返回的结果。例如,在重叠操作时如果操作还未完成函数就返回,那么函数就返回FALSE,而且 GetLastError函数返回ERROR_IO_PENDING。这说明重叠操作还未完成。



同步方式读写串口比较简单,下面先例举同步方式读写串口的代码:



//同步读串口

char str[100];

DWORD wCount;//读取的字节数

BOOL bReadStat;

bReadStat=ReadFile(hCom,str,100,&wCount,NULL);

if(!bReadStat)

{

AfxMessageBox("读串口失败!");

return FALSE;

}

return TRUE;



//同步写串口



char lpOutBuffer[100];

DWORD dwBytesWrite=100;

COMSTAT ComStat;

DWORD dwErrorFlags;

BOOL bWriteStat;

ClearCommError(hCom,&dwErrorFlags,&ComStat);

bWriteStat=WriteFile(hCom,lpOutBuffer,dwBytesWrite,& dwBytesWrite,NULL);

if(!bWriteStat)

{

AfxMessageBox("写串口失败!");

}

PurgeComm(hCom, PURGE_TXABORT|

PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);



在重叠操作时,操作还未完成函数就返回。



  重叠I/O非常灵活,它也可以实现阻塞(例如我们可以设置一定要读取到一个数据才能进行到下一步操作)。有两种方法可以等待操作完成:一种方法是用象 WaitForSingleObject这样的等待函数来等待OVERLAPPED结构的hEvent成员;另一种方法是调用 GetOverlappedResult函数等待,后面将演示说明。

下面我们先简单说一下OVERLAPPED结构和GetOverlappedResult函数:

OVERLAPPED结构

OVERLAPPED结构包含了重叠I/O的一些信息,定义如下:



typedef struct _OVERLAPPED { // o  

    DWORD  Internal; 

    DWORD  InternalHigh; 

    DWORD  Offset; 

    DWORD  OffsetHigh; 

    HANDLE hEvent; 

} OVERLAPPED;



  在使用ReadFile和WriteFile重叠操作时,线程需要创建OVERLAPPED结构以供这两个函数使用。线程通过OVERLAPPED结构获得当前的操作状态,该结构最重要的成员是hEvent。hEvent是读写事件。当串口使用异步通讯时,函数返回时操作可能还没有完成,程序可以通过检查该事件得知是否读写完毕。

  当调用ReadFile, WriteFile 函数的时候,该成员会自动被置为无信号状态;当重叠操作完成后,该成员变量会自动被置为有信号状态。



GetOverlappedResult函数

BOOL GetOverlappedResult(

    HANDLE hFile, // 串口的句柄  

    

    // 指向重叠操作开始时指定的OVERLAPPED结构

    LPOVERLAPPED lpOverlapped, 

    

    // 指向一个32位变量,该变量的值返回实际读写操作传输的字节数。

    LPDWORD lpNumberOfBytesTransferred, 

    

    // 该参数用于指定函数是否一直等到重叠操作结束。

    // 如果该参数为TRUE,函数直到操作结束才返回。

    // 如果该参数为FALSE,函数直接返回,这时如果操作没有完成,

    // 通过调用GetLastError()函数会返回ERROR_IO_INCOMPLETE。

    BOOL bWait  

   ); 



该函数返回重叠操作的结果,用来判断异步操作是否完成,它是通过判断OVERLAPPED结构中的hEvent是否被置位来实现的。



异步读串口的示例代码:



char lpInBuffer[1024];

DWORD dwBytesRead=1024;

COMSTAT ComStat;

DWORD dwErrorFlags;

OVERLAPPED m_osRead;

memset(&m_osRead,0,sizeof(OVERLAPPED));

m_osRead.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL);



ClearCommError(hCom,&dwErrorFlags,&ComStat);

dwBytesRead=min(dwBytesRead,(DWORD)ComStat.cbInQue);

if(!dwBytesRead)

return FALSE;

BOOL bReadStatus;

bReadStatus=ReadFile(hCom,lpInBuffer,

 dwBytesRead,&dwBytesRead,&m_osRead);



if(!bReadStatus) //如果ReadFile函数返回FALSE

{

if(GetLastError()==ERROR_IO_PENDING)

//GetLastError()函数返回ERROR_IO_PENDING,表明串口正在进行读操作 

{

WaitForSingleObject(m_osRead.hEvent,2000);

//使用WaitForSingleObject函数等待,直到读操作完成或延时已达到2秒钟

//当串口读操作进行完毕后,m_osRead的hEvent事件会变为有信号

PurgeComm(hCom, PURGE_TXABORT|

PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);

return dwBytesRead;

}

return 0;

}

PurgeComm(hCom, PURGE_TXABORT|

  PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);

return dwBytesRead;



  对以上代码再作简要说明:在使用ReadFile 函数进行读操作前,应先使用ClearCommError函数清除错误。ClearCommError函数的原型如下:



BOOL ClearCommError(



    HANDLE hFile, // 串口句柄

    LPDWORD lpErrors, // 指向接收错误码的变量

    LPCOMSTAT lpStat // 指向通讯状态缓冲区

   ); 



该函数获得通信错误并报告串口的当前状态,同时,该函数清除串口的错误标志以便继续输入、输出操作。

参数lpStat指向一个COMSTAT结构,该结构返回串口状态信息。 COMSTAT结构 COMSTAT结构包含串口的信息,结构定义如下:



typedef struct _COMSTAT { // cst  

    DWORD fCtsHold : 1;   // Tx waiting for CTS signal 

    DWORD fDsrHold : 1;   // Tx waiting for DSR signal 

    DWORD fRlsdHold : 1;  // Tx waiting for RLSD signal 

    DWORD fXoffHold : 1;  // Tx waiting, XOFF char rec''d 

    DWORD fXoffSent : 1;  // Tx waiting, XOFF char sent 

    DWORD fEof : 1;       // EOF character sent 

    DWORD fTxim : 1;      // character waiting for Tx 

    DWORD fReserved : 25; // reserved 

    DWORD cbInQue;        // bytes in input buffer 

    DWORD cbOutQue;       // bytes in output buffer 

} COMSTAT, *LPCOMSTAT; 



本文只用到了cbInQue成员变量,该成员变量的值代表输入缓冲区的字节数。



  最后用PurgeComm函数清空串口的输入输出缓冲区。



  这段代码用WaitForSingleObject函数来等待OVERLAPPED结构的hEvent成员,下面我们再演示一段调用GetOverlappedResult函数等待的异步读串口示例代码:



char lpInBuffer[1024];

DWORD dwBytesRead=1024;

BOOL bReadStatus;

DWORD dwErrorFlags;

COMSTAT ComStat;

OVERLAPPED m_osRead;



ClearCommError(hCom,&dwErrorFlags,&ComStat);

if(!ComStat.cbInQue)

return 0;

dwBytesRead=min(dwBytesRead,(DWORD)ComStat.cbInQue);

bReadStatus=ReadFile(hCom, lpInBuffer,dwBytesRead,

&dwBytesRead,&m_osRead);

if(!bReadStatus) //如果ReadFile函数返回FALSE

{

if(GetLastError()==ERROR_IO_PENDING)

{

GetOverlappedResult(hCom,

&m_osRead,&dwBytesRead,TRUE);

           // GetOverlappedResult函数的最后一个参数设为TRUE,

           //函数会一直等待,直到读操作完成或由于错误而返回。



return dwBytesRead;

}

return 0;

}

return dwBytesRead;



异步写串口的示例代码:



char buffer[1024];

DWORD dwBytesWritten=1024;

DWORD dwErrorFlags;

COMSTAT ComStat;

OVERLAPPED m_osWrite;

BOOL bWriteStat;



bWriteStat=WriteFile(hCom,buffer,dwBytesWritten,

&dwBytesWritten,&m_OsWrite);

if(!bWriteStat)

{

if(GetLastError()==ERROR_IO_PENDING)

{

WaitForSingleObject(m_osWrite.hEvent,1000);

return dwBytesWritten;

}

return 0;

}

return dwBytesWritten;



(4)、关闭串口



  利用API函数关闭串口非常简单,只需使用CreateFile函数返回的句柄作为参数调用CloseHandle即可:



BOOL CloseHandle(

    HANDLE hObject; //handle to object to close 

);



串口编程的一个实例



  为了让您更好地理解串口编程,下面我们分别编写两个例程(见附带的源码部分),这两个例程都实现了工控机与百特显示仪表通过RS485接口进行的串口通信。其中第一个例程采用同步串口操作,第二个例程采用异步串口操作。

  我们只介绍软件部分,RS485接口接线方法不作介绍,感兴趣的读者可以查阅相关资料。

例程1



  打开VC++6.0,新建基于对话框的工程RS485Comm,在主对话框窗口 IDD_RS485COMM_DIALOG上添加两个按钮,ID分别为IDC_SEND和IDC_RECEIVE,标题分别为“发送”和“接收”;添加一个静态文本框IDC_DISP,用于显示串口接收到的内容。



在RS485CommDlg.cpp文件中添加全局变量:



HANDLE hCom;  //全局变量,串口句柄



在RS485CommDlg.cpp文件中的OnInitDialog()函数添加如下代码:



// TODO: Add extra initialization here

hCom=CreateFile("COM1",//COM1口

GENERIC_READ|GENERIC_WRITE, //允许读和写

0, //独占方式

NULL,

OPEN_EXISTING, //打开而不是创建

0, //同步方式

NULL);

if(hCom==(HANDLE)-1)

{

AfxMessageBox("打开COM失败!");

return FALSE;

}



SetupComm(hCom,100,100); //输入缓冲区和输出缓冲区的大小都是1024



COMMTIMEOUTS TimeOuts;

//设定读超时

TimeOuts.ReadIntervalTimeout=MAXDWORD;

TimeOuts.ReadTotalTimeoutMultiplier=0;

TimeOuts.ReadTotalTimeoutConstant=0;

//在读一次输入缓冲区的内容后读操作就立即返回,

//而不管是否读入了要求的字符。





//设定写超时

TimeOuts.WriteTotalTimeoutMultiplier=100;

TimeOuts.WriteTotalTimeoutConstant=500;

SetCommTimeouts(hCom,&TimeOuts); //设置超时



DCB dcb;

GetCommState(hCom,&dcb);

dcb.BaudRate=9600; //波特率为9600

dcb.ByteSize=8; //每个字节有8位

dcb.Parity=NOPARITY; //无奇偶校验位

dcb.StopBits=TWOSTOPBITS; //两个停止位

SetCommState(hCom,&dcb);



PurgeComm(hCom,PURGE_TXCLEAR|PURGE_RXCLEAR);



分别双击IDC_SEND按钮和IDC_RECEIVE按钮,添加两个按钮的响应函数:



void CRS485CommDlg::OnSend() 

{

// TODO: Add your control notification handler code here

// 在此需要简单介绍百特公司XMA5000的通讯协议:

//该仪表RS485通讯采用主机广播方式通讯。

//串行半双工,帧11位,1个起始位(0),8个数据位,2个停止位(1)

//如:读仪表显示的瞬时值,主机发送:DC1 AAA BB ETX

//其中:DC1是标准ASCII码的一个控制符号,码值为11H(十进制的17)

//在XMA5000的通讯协议中,DC1表示读瞬时值

//AAA是从机地址码,也就是XMA5000显示仪表的通讯地址

//BB为通道号,读瞬时值时该值为01

//ETX也是标准ASCII码的一个控制符号,码值为03H

//在XMA5000的通讯协议中,ETX表示主机结束符



char lpOutBuffer[7];

memset(lpOutBuffer,''\0'',7); //前7个字节先清零

lpOutBuffer[0]=''\x11'';  //发送缓冲区的第1个字节为DC1

lpOutBuffer[1]=''0'';  //第2个字节为字符0(30H)

lpOutBuffer[2]=''0''; //第3个字节为字符0(30H)

lpOutBuffer[3]=''1''; // 第4个字节为字符1(31H)

lpOutBuffer[4]=''0''; //第5个字节为字符0(30H)

lpOutBuffer[5]=''1''; //第6个字节为字符1(31H)

lpOutBuffer[6]=''\x03''; //第7个字节为字符ETX

//从该段代码可以看出,仪表的通讯地址为001 

DWORD dwBytesWrite=7;

COMSTAT ComStat;

DWORD dwErrorFlags;

BOOL bWriteStat;

ClearCommError(hCom,&dwErrorFlags,&ComStat);

bWriteStat=WriteFile(hCom,lpOutBuffer,dwBytesWrite,& dwBytesWrite,NULL);

if(!bWriteStat)

{

AfxMessageBox("写串口失败!");

}



}

void CRS485CommDlg::OnReceive() 

{

// TODO: Add your control notification handler code here



char str[100];

memset(str,''\0'',100);

DWORD wCount=100;//读取的字节数

BOOL bReadStat;

bReadStat=ReadFile(hCom,str,wCount,&wCount,NULL);

if(!bReadStat)

AfxMessageBox("读串口失败!");

PurgeComm(hCom, PURGE_TXABORT|

PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);

m_disp=str;

UpdateData(FALSE);



}



您可以观察返回的字符串,其中有和仪表显示值相同的部分,您可以进行相应的字符串操作取出仪表的显示值。

打开ClassWizard,为静态文本框IDC_DISP添加CString类型变量m_disp,同时添加WM_CLOSE的相应函数:



void CRS485CommDlg::OnClose() 

{

// TODO: Add your message handler code here and/or call default

    CloseHandle(hCom); //程序退出时关闭串口

CDialog::OnClose();

}



程序的相应部分已经在代码内部作了详细介绍。连接好硬件部分,编译运行程序,细心体会串口同步操作部分。



例程2



  打开VC++6.0,新建基于对话框的工程RS485Comm,在主对话框窗口IDD_RS485COMM_DIALOG上添加两个按钮,ID分别为 IDC_SEND和IDC_RECEIVE,标题分别为“发送”和“接收”;添加一个静态文本框IDC_DISP,用于显示串口接收到的内容。在RS485CommDlg.cpp文件中添加全局变量:



HANDLE hCom; //全局变量,



串口句柄在RS485CommDlg.cpp文件中的OnInitDialog()函数添加如下代码:



hCom=CreateFile("COM1",//COM1口

GENERIC_READ|GENERIC_WRITE, //允许读和写

0, //独占方式

NULL,

OPEN_EXISTING, //打开而不是创建

FILE_ATTRIBUTE_NORMAL|FILE_FLAG_OVERLAPPED, //重叠方式

NULL);

if(hCom==(HANDLE)-1)

{

AfxMessageBox("打开COM失败!");

return FALSE;

}



SetupComm(hCom,100,100); //输入缓冲区和输出缓冲区的大小都是100



COMMTIMEOUTS TimeOuts;

//设定读超时

TimeOuts.ReadIntervalTimeout=MAXDWORD;

TimeOuts.ReadTotalTimeoutMultiplier=0;

TimeOuts.ReadTotalTimeoutConstant=0;

//在读一次输入缓冲区的内容后读操作就立即返回,

//而不管是否读入了要求的字符。





//设定写超时

TimeOuts.WriteTotalTimeoutMultiplier=100;

TimeOuts.WriteTotalTimeoutConstant=500;

SetCommTimeouts(hCom,&TimeOuts); //设置超时



DCB dcb;

GetCommState(hCom,&dcb);

dcb.BaudRate=9600; //波特率为9600

dcb.ByteSize=8; //每个字节有8位

dcb.Parity=NOPARITY; //无奇偶校验位

dcb.StopBits=TWOSTOPBITS; //两个停止位

SetCommState(hCom,&dcb);



PurgeComm(hCom,PURGE_TXCLEAR|PURGE_RXCLEAR);



分别双击IDC_SEND按钮和IDC_RECEIVE按钮,添加两个按钮的响应函数:



void CRS485CommDlg::OnSend() 

{

// TODO: Add your control notification handler code here

OVERLAPPED m_osWrite;

memset(&m_osWrite,0,sizeof(OVERLAPPED));

m_osWrite.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL);





char lpOutBuffer[7];

memset(lpOutBuffer,''\0'',7);

lpOutBuffer[0]=''\x11'';

lpOutBuffer[1]=''0'';

lpOutBuffer[2]=''0'';

lpOutBuffer[3]=''1'';

lpOutBuffer[4]=''0'';

lpOutBuffer[5]=''1'';

lpOutBuffer[6]=''\x03'';



DWORD dwBytesWrite=7;

COMSTAT ComStat;

DWORD dwErrorFlags;

BOOL bWriteStat;

ClearCommError(hCom,&dwErrorFlags,&ComStat);

bWriteStat=WriteFile(hCom,lpOutBuffer,

dwBytesWrite,& dwBytesWrite,&m_osWrite);



if(!bWriteStat)

{

if(GetLastError()==ERROR_IO_PENDING)

{

WaitForSingleObject(m_osWrite.hEvent,1000);

}

}



}



void CRS485CommDlg::OnReceive() 

{

// TODO: Add your control notification handler code here

OVERLAPPED m_osRead;

memset(&m_osRead,0,sizeof(OVERLAPPED));

m_osRead.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL);



COMSTAT ComStat;

DWORD dwErrorFlags;



char str[100];

memset(str,''\0'',100);

DWORD dwBytesRead=100;//读取的字节数

BOOL bReadStat;



ClearCommError(hCom,&dwErrorFlags,&ComStat);

dwBytesRead=min(dwBytesRead, (DWORD)ComStat.cbInQue);

bReadStat=ReadFile(hCom,str,

dwBytesRead,&dwBytesRead,&m_osRead);

if(!bReadStat)

{

if(GetLastError()==ERROR_IO_PENDING)

    //GetLastError()函数返回ERROR_IO_PENDING,表明串口正在进行读操作

{

WaitForSingleObject(m_osRead.hEvent,2000);

    //使用WaitForSingleObject函数等待,直到读操作完成或延时已达到2秒钟

    //当串口读操作进行完毕后,m_osRead的hEvent事件会变为有信号

}

}



PurgeComm(hCom, PURGE_TXABORT|

PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);

m_disp=str;

UpdateData(FALSE);

}



打开ClassWizard,为静态文本框IDC_DISP添加CString类型变量m_disp,同时添加WM_CLOSE的相应函数:



void CRS485CommDlg::OnClose() 

{

// TODO: Add your message handler code here and/or call default

    CloseHandle(hCom); //程序退出时关闭串口

CDialog::OnClose();

}

上一篇:Windows自带强大的入侵检测工具——Netstat 命令 查询是否中木马


下一篇:IOS--当字符串返回的数据格式为xml/html时