使用注意力机制建模 - 标准化日期格式

文章目录


参考 基于深度学习的自然语言处理

本文使用attention机制的模型,将各种格式的日期转化成标准格式的日期

1. 概述

  • LSTM、GRU 减少了梯度消失的问题,但是对于复杂依赖结构的长句子,梯度消失仍然存在
  • 注意力机制能同时看见句子中的每个位置,并赋予每个位置不同的权重(注意力),且可以并行计算

使用注意力机制建模 - 标准化日期格式

2. 数据

  • 生成日期数据
from faker import Faker
from babel.dates import format_date
import random
fake = Faker()
fake.seed(123)
random.seed(321)

# 各种日期格式
FORMATS = ['short',
           'medium',
           'long',
           'full',
           'full',
           'full',
           'full',
           'full',
           'full',
           'full',
           'full',
           'full',
           'full',
           'd MMM YYY',
           'd MMMM YYY',
           'dd MMM YYY',
           'd MMM, YYY',
           'd MMMM, YYY',
           'dd, MMM YYY',
           'd MM YY',
           'd MMMM YYY',
           'MMMM d YYY',
           'MMMM d, YYY',
           'dd.MM.YY']
  • 生成日期数据:随机格式(X),标准格式(Y)
def load_date():
    # 加载一些日期数据
    dt = fake.date_object() # 随机一个日期
    human_readable = format_date(dt, format=random.choice(FORMATS),
                                 locale='en_US')
    # 使用随机选取的格式,生成日期
    human_readable = human_readable.lower().replace(',','')
    machine_readable = dt.isoformat() # 标准格式
    return human_readable, machine_readable, dt

test_date = load_date()

输出:
使用注意力机制建模 - 标准化日期格式

  • 建立字典,以及映射关系(字符 :idx)
from tqdm import tqdm # 显示进度条
def load_dateset(num_of_data):
    human_vocab = set()
    machine_vocab = set()
    dataset = []
    Tx = 30 # 日期最大长度
    for i in tqdm(range(num_of_data)):
        h, m, _ = load_date()
        if h is not None:
            dataset.append((h, m))
            human_vocab.update(tuple(h))
            machine_vocab.update(tuple(m))
    human = dict(zip(sorted(human_vocab)+['<unk>', '<pad>'],
                     list(range(len(human_vocab)+2))))
    # x 字符:idx 的映射
    inv_machine = dict(enumerate(sorted(machine_vocab)))
    # idx : y 字符
    machine = {v : k for k, v in inv_machine.items()}
    # y 字符 : idx
    return dataset, human, machine, inv_machine

m = 10000 # 样本个数
dataset, human_vocab, machine_vocab, inv_machine_vocab = load_dateset(m)
  • 日期(char序列)转 ids 序列,并且 pad / 截断
import numpy as np
from keras.utils import to_categorical

def string_to_int(string, length, vocab):
    string = string.lower().replace(',','')
    if len(string) > length: # 长了,截断
        string = string[:length]
    rep = list(map(lambda x : vocab.get(x, '<unk>'), string))
    # 对string里每个char 使用 匿名函数 获取映射的id,没有的话,使用unk的id,map返回迭代器,转成list
    if len(string) < length:
        rep += [vocab['<pad>']]*(length-len(string))
        # 长度不够,加上 pad 的 id
    return rep # 返回 [ids,...]
  • 根据 ids 序列生成 one_hot 矩阵
def process_data(dataset, human_vocab, machine_vocab, Tx, Ty):
    X,Y = zip(*dataset)
    print("处理前 X:{}".format(X))
    print("处理前 Y:{}".format(Y))
    X = np.array([string_to_int(date, Tx, human_vocab) for date in X])
    Y = [string_to_int(date, Ty, machine_vocab) for date in Y]
    print("处理后 X的shape:{}".format(X.shape))
    print("处理后 Y: {}".format(Y))

    Xoh = np.array(list(map(lambda x : to_categorical(x, num_classes=len(human_vocab)), X)))
    Yoh = np.array(list(map(lambda x : to_categorical(x, num_classes=len(machine_vocab)), Y)))
    return X, np.array(Y), Xoh, Yoh
Tx = 30 # 输入长度
Ty = 10 # 输出长度
X, Y, Xoh, Yoh = process_data(dataset, human_vocab, machine_vocab, Tx, Ty)

使用注意力机制建模 - 标准化日期格式
检查生成的 one_hot 编码矩阵维度

print(X.shape)
print(Y.shape)
print(Xoh.shape)
print(Yoh.shape)

输出:

(10000, 30)
(10000, 10)
(10000, 30, 37)
(10000, 10, 11)

3. 模型

  • softmax 激活函数,求注意力权重
from keras import backend as K
def softmax(x, axis=1):
    ndim = K.ndim(x)
    if ndim == 2:
        return K.softmax(x)
    elif ndim > 2:
        e = K.exp(x - K.max(x, axis=axis, keepdims=True))
        s = K.sum(e, axis=axis, keepdims=True)
        return e/s
    else:
        raise ValueError('维度不对,不能是1维')
  • 模型组件
from keras.layers import RepeatVector, LSTM, Concatenate, \
    Dense, Activation, Dot, Input, Bidirectional

repeator = RepeatVector(Tx) # 重复 Tx 次
# 重复器
# Input shape:
#     2D tensor of shape `(num_samples, features)`.
#
# Output shape:
#     3D tensor of shape `(num_samples, n, features)`.
concator = Concatenate(axis=-1) # 拼接器
densor1 = Dense(10, activation='tanh') # FC
densor2 = Dense(1, activation='relu') # FC
activator = Activation(softmax, name='attention_weights') # 计算注意力权重
dotor = Dot(axes=1) # 加权
  • 模型
def one_step_attention(h, s_prev):
    s_prev = repeator(s_prev) # 将前一个输出状态重复 Tx 次
    concat = concator([h, s_prev]) # 与 全部句子状态 拼接
    e = densor1(concat) # 经过 FC
    energies = densor2(e) # 经过FC
    alphas = activator(energies) # 得到注意力权重
    context = dotor([alphas, h]) # 跟原句子状态做attention
    return context # 得到上下文向量,后序输入到解码器

# 解码器,是一个单向LSTM
n_h = 32
n_s = 64
post_activation_LSTM_cell = LSTM(n_s, return_state=True) # 单向LSTM
output_layer = Dense(len(machine_vocab), activation=softmax) # FC 输出预测值

from keras.models import Model
def model(Tx, Ty, n_h, n_s, human_vocab_size, machine_vocab_size):
    X = Input(shape=(Tx,human_vocab_size), name='input_first')
    s0 = Input(shape=(n_s,),name='s0')
    c0 = Input(shape=(n_s,),name='c0')
    s = s0
    c = c0
    outputs = []
    h = Bidirectional(LSTM(n_h, return_sequences=True))(X) # 编码器得到整个序列的状态
    for t in range(Ty): # 解码器 推理
        context = one_step_attention(h, s) # attention 得到上下文向量
        s, _, c = post_activation_LSTM_cell(context, initial_state=[s,c])
        out = output_layer(s) # FC 输出预测
        outputs.append(out)
    model = Model(inputs=[X,s0,c0], outputs=outputs)
    return model
    
model = model(Tx,Ty,n_h,n_s,len(human_vocab), len(machine_vocab))
model.summary()

from keras.utils import plot_model
plot_model(model, to_file='model.png',show_shapes=True,rankdir='TB')

输出:

Model: "functional_1"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_first (InputLayer)        [(None, 30, 37)]     0                                            
__________________________________________________________________________________________________
s0 (InputLayer)                 [(None, 64)]         0                                            
__________________________________________________________________________________________________
bidirectional (Bidirectional)   (None, 30, 64)       17920       input_first[0][0]                
__________________________________________________________________________________________________
repeat_vector (RepeatVector)    (None, 30, 64)       0           s0[0][0]                         
                                                                 lstm[0][0]                       
                                                                 lstm[1][0]                       
                                                                 lstm[2][0]                       
                                                                 lstm[3][0]                       
                                                                 lstm[4][0]                       
                                                                 lstm[5][0]                       
                                                                 lstm[6][0]                       
                                                                 lstm[7][0]                       
                                                                 lstm[8][0]                       
__________________________________________________________________________________________________
concatenate (Concatenate)       (None, 30, 128)      0           bidirectional[0][0]              
                                                                 repeat_vector[0][0]              
                                                                 bidirectional[0][0]              
                                                                 repeat_vector[1][0]              
                                                                 bidirectional[0][0]              
                                                                 repeat_vector[2][0]              
                                                                 bidirectional[0][0]              
                                                                 repeat_vector[3][0]              
                                                                 bidirectional[0][0]              
                                                                 repeat_vector[4][0]              
                                                                 bidirectional[0][0]              
                                                                 repeat_vector[5][0]              
                                                                 bidirectional[0][0]              
                                                                 repeat_vector[6][0]              
                                                                 bidirectional[0][0]              
                                                                 repeat_vector[7][0]              
                                                                 bidirectional[0][0]              
                                                                 repeat_vector[8][0]              
                                                                 bidirectional[0][0]              
                                                                 repeat_vector[9][0]              
__________________________________________________________________________________________________
dense (Dense)                   (None, 30, 10)       1290        concatenate[0][0]                
                                                                 concatenate[1][0]                
                                                                 concatenate[2][0]                
                                                                 concatenate[3][0]                
                                                                 concatenate[4][0]                
                                                                 concatenate[5][0]                
                                                                 concatenate[6][0]                
                                                                 concatenate[7][0]                
                                                                 concatenate[8][0]                
                                                                 concatenate[9][0]                
__________________________________________________________________________________________________
dense_1 (Dense)                 (None, 30, 1)        11          dense[0][0]                      
                                                                 dense[1][0]                      
                                                                 dense[2][0]                      
                                                                 dense[3][0]                      
                                                                 dense[4][0]                      
                                                                 dense[5][0]                      
                                                                 dense[6][0]                      
                                                                 dense[7][0]                      
                                                                 dense[8][0]                      
                                                                 dense[9][0]                      
__________________________________________________________________________________________________
attention_weights (Activation)  (None, 30, 1)        0           dense_1[0][0]                    
                                                                 dense_1[1][0]                    
                                                                 dense_1[2][0]                    
                                                                 dense_1[3][0]                    
                                                                 dense_1[4][0]                    
                                                                 dense_1[5][0]                    
                                                                 dense_1[6][0]                    
                                                                 dense_1[7][0]                    
                                                                 dense_1[8][0]                    
                                                                 dense_1[9][0]                    
__________________________________________________________________________________________________
dot (Dot)                       (None, 1, 64)        0           attention_weights[0][0]          
                                                                 bidirectional[0][0]              
                                                                 attention_weights[1][0]          
                                                                 bidirectional[0][0]              
                                                                 attention_weights[2][0]          
                                                                 bidirectional[0][0]              
                                                                 attention_weights[3][0]          
                                                                 bidirectional[0][0]              
                                                                 attention_weights[4][0]          
                                                                 bidirectional[0][0]              
                                                                 attention_weights[5][0]          
                                                                 bidirectional[0][0]              
                                                                 attention_weights[6][0]          
                                                                 bidirectional[0][0]              
                                                                 attention_weights[7][0]          
                                                                 bidirectional[0][0]              
                                                                 attention_weights[8][0]          
                                                                 bidirectional[0][0]              
                                                                 attention_weights[9][0]          
                                                                 bidirectional[0][0]              
__________________________________________________________________________________________________
c0 (InputLayer)                 [(None, 64)]         0                                            
__________________________________________________________________________________________________
lstm (LSTM)                     [(None, 64), (None,  33024       dot[0][0]                        
                                                                 s0[0][0]                         
                                                                 c0[0][0]                         
                                                                 dot[1][0]                        
                                                                 lstm[0][0]                       
                                                                 lstm[0][2]                       
                                                                 dot[2][0]                        
                                                                 lstm[1][0]                       
                                                                 lstm[1][2]                       
                                                                 dot[3][0]                        
                                                                 lstm[2][0]                       
                                                                 lstm[2][2]                       
                                                                 dot[4][0]                        
                                                                 lstm[3][0]                       
                                                                 lstm[3][2]                       
                                                                 dot[5][0]                        
                                                                 lstm[4][0]                       
                                                                 lstm[4][2]                       
                                                                 dot[6][0]                        
                                                                 lstm[5][0]                       
                                                                 lstm[5][2]                       
                                                                 dot[7][0]                        
                                                                 lstm[6][0]                       
                                                                 lstm[6][2]                       
                                                                 dot[8][0]                        
                                                                 lstm[7][0]                       
                                                                 lstm[7][2]                       
                                                                 dot[9][0]                        
                                                                 lstm[8][0]                       
                                                                 lstm[8][2]                       
__________________________________________________________________________________________________
dense_2 (Dense)                 (None, 11)           715         lstm[0][0]                       
                                                                 lstm[1][0]                       
                                                                 lstm[2][0]                       
                                                                 lstm[3][0]                       
                                                                 lstm[4][0]                       
                                                                 lstm[5][0]                       
                                                                 lstm[6][0]                       
                                                                 lstm[7][0]                       
                                                                 lstm[8][0]                       
                                                                 lstm[9][0]                       
==================================================================================================
Total params: 52,960
Trainable params: 52,960
Non-trainable params: 0
________________________________________________________________________________________________

使用注意力机制建模 - 标准化日期格式

4. 训练

from keras.optimizers import Adam
# 优化器
opt = Adam(learning_rate=0.005, decay=0.01)
# 配置模型
model.compile(optimizer=opt, loss='categorical_crossentropy',
              metrics=['accuracy'])

# 初始化 解码器状态
s0 = np.zeros((m, n_s))
c0 = np.zeros((m, n_s))
outputs = list(Yoh.swapaxes(0, 1))
# Yoh shape 10000*10*11,调换0,1轴,为10*10000*11
# outputs list,长度 10, 每个里面是array 10000*11

history = model.fit([Xoh, s0, c0], outputs,
                    epochs=10, batch_size=128,
                    validation_split=0.1)
  • 绘制 loss 和 各位置的准确率
from matplotlib import pyplot as plt
import pandas as pd
his = pd.DataFrame(history.history)
print(his.columns)
loss = history.history['loss']
val_loss = history.history['val_loss']

plt.plot(loss, label='train Loss')
plt.plot(val_loss, label='valid Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.grid()
plt.show()

# 列 具体的名字根据运行次数,会有变化
col_train_acc = (
 'dense_7_accuracy', 'dense_7_1_accuracy', 'dense_7_2_accuracy',
 'dense_7_3_accuracy', 'dense_7_4_accuracy', 'dense_7_5_accuracy',
 'dense_7_6_accuracy', 'dense_7_7_accuracy', 'dense_7_8_accuracy',
 'dense_7_9_accuracy')
col_test_acc = (
 'val_dense_7_accuracy', 'val_dense_7_1_accuracy',
 'val_dense_7_2_accuracy', 'val_dense_7_3_accuracy',
 'val_dense_7_4_accuracy', 'val_dense_7_5_accuracy',
 'val_dense_7_6_accuracy', 'val_dense_7_7_accuracy',
 'val_dense_7_8_accuracy', 'val_dense_7_9_accuracy')
train_acc = pd.DataFrame(history.history[c] for c in col_train_acc)
test_acc = pd.DataFrame(history.history[c] for c in col_test_acc)

train_acc.plot()
plt.title('Training Accuracy on pos')
plt.legend()
plt.grid()
plt.show()

test_acc.plot()
plt.title('Validation Accuracy on pos')
plt.legend()
plt.grid()
plt.show()

使用注意力机制建模 - 标准化日期格式

5. 测试

s0 = np.zeros((1, n_s))
c0 = np.zeros((1, n_s))
test_data,_,_,_ = load_dateset(10)
for x,y in test_data:
    print(x + " ==> " +y)
for x,_ in test_data:
    source = string_to_int(x, Tx, human_vocab)
    source = np.array(list(map(lambda a : to_categorical(a, num_classes=len(human_vocab)), source)))
    source = source[np.newaxis, :]
    pred = model.predict([source, s0, c0])
    pred = np.argmax(pred, axis=-1)
    output = [inv_machine_vocab[int(i)] for i in pred]
    print('source:',x)
    print('output:',''.join(output))

输出:

18 april 2014 ==> 2014-04-18
saturday august 22 1998 ==> 1998-08-22
october 22 1995 ==> 1995-10-22
thursday february 29 1996 ==> 1996-02-29
wednesday october 17 1979 ==> 1979-10-17
7 12 73 ==> 1973-12-07
9/30/01 ==> 2001-09-30
22 may 2001 ==> 2001-05-22
7 march 1979 ==> 1979-03-07
19 feb 2013 ==> 2013-02-19

预测10个,错误了4个,日期字符不完全正确

source: 18 april 2014
output: 2014-04-18
source: saturday august 22 1998
output: 1998-08-22
source: october 22 1995
output: 1995-12-22 # 错误 10 月
source: thursday february 29 1996
output: 1996-02-29
source: wednesday october 17 1979
output: 1979-10-17
source: 7 12 73
output: 1973-02-07 # 错误 12月
source: 9/30/01
output: 2001-05-00 # 错误 09-30
source: 22 may 2001
output: 2011-05-22 # 错误 2001
source: 7 march 1979
output: 1979-03-07
source: 19 feb 2013
output: 2013-02-19
上一篇:Tensorflow中Sequential model


下一篇:DenseNet模型解读