iOS gcd 串行,并行,同步,异步代码研究

参考文章:

http://www.cnblogs.com/mddblog/p/4767559.html

重要结论:

  1)串行队列,同步执行-----串行队列意味着顺序执行,同步执行意味着不开启线程(在当前线程执行)

  2)串行队列,异步执行-----串行队列意味着任务顺序执行,异步执行说明要开线程, (如果开多个线程的话,不能保证串行队列顺序执行,所以只开一个线程)

  3)并行队列,异步执行-----并行队列意味着执行顺序不确定,异步执行意味着会开启线程,而并行队列又允许不按顺序执行,所以系统为了提高性能会开启多个线程,来队列取任务(队列中任务取出仍然是顺序取出的,只是线程执行无序)。

  4)并行队列,同步执行-----同步执行意味着不开线程,则肯定是顺序执行

分别进行验证

串行同步

// 串行同步
- (void)test_queue_serial_sync
{
NSLog(@"串行同步");
dispatch_queue_t queue = dispatch_queue_create("com.demo.001", DISPATCH_QUEUE_SERIAL);
NSLog(@"main thread:%p", [NSThread mainThread]);
dispatch_sync(queue, ^{
NSLog(@"1 thread: %p", [NSThread currentThread]);
});
dispatch_sync(queue, ^{
NSLog(@"2 thread: %p", [NSThread currentThread]);
});
dispatch_sync(queue, ^{
NSLog(@"3 thread: %p", [NSThread currentThread]);
});
dispatch_sync(queue, ^{
NSLog(@"4 thread: %p", [NSThread currentThread]);
});
}
// 结果
2017-02-10 18:00:21.991383 RXVerifyExample[4927:2465789] 串行同步
2017-02-10 18:00:21.991636 RXVerifyExample[4927:2465789] main thread:0x17406cb00
2017-02-10 18:00:21.992020 RXVerifyExample[4927:2465789] 1 thread: 0x17406cb00
2017-02-10 18:00:21.992097 RXVerifyExample[4927:2465789] 2 thread: 0x17406cb00
2017-02-10 18:00:21.992165 RXVerifyExample[4927:2465789] 3 thread: 0x17406cb00
2017-02-10 18:00:21.992230 RXVerifyExample[4927:2465789] 4 thread: 0x17406cb00
 

结论:

串行同步,不创建任何新的线程,因为是在主线程中执行这个方法的,所以,同步方法都在主线程。

并行同步

// 并行同步
- (void)test_queue_concurrent_sync
{
NSLog(@"并行同步");
dispatch_queue_t queue = dispatch_queue_create("com.demo.002", DISPATCH_QUEUE_CONCURRENT);
NSLog(@"main thread:%p", [NSThread mainThread]);
dispatch_sync(queue, ^{
NSLog(@"1 thread: %p", [NSThread currentThread]);
});
dispatch_sync(queue, ^{
NSLog(@"2 thread: %p", [NSThread currentThread]);
});
dispatch_sync(queue, ^{
NSLog(@"3 thread: %p", [NSThread currentThread]);
});
dispatch_sync(queue, ^{
NSLog(@"4 thread: %p", [NSThread currentThread]);
});
}
// 结果:
2017-02-10 18:04:33.107907 RXVerifyExample[4930:2467403] 并行同步
2017-02-10 18:04:33.108053 RXVerifyExample[4930:2467403] main thread:0x174066600
2017-02-10 18:04:33.108121 RXVerifyExample[4930:2467403] 1 thread: 0x174066600
2017-02-10 18:04:33.108177 RXVerifyExample[4930:2467403] 2 thread: 0x174066600
2017-02-10 18:04:33.108219 RXVerifyExample[4930:2467403] 3 thread: 0x174066600
2017-02-10 18:04:33.108259 RXVerifyExample[4930:2467403] 4 thread: 0x174066600
 

结论:跟串行同步是一样的。

串行异步1

// 串行异步1
- (void)test_queue_serial_async1
{
NSLog(@"串行异步方法1");
dispatch_queue_t queue = dispatch_queue_create("com.demo.0031", DISPATCH_QUEUE_SERIAL);
NSLog(@"main thread:%p", [NSThread mainThread]);
dispatch_async(queue, ^{
NSLog(@"1 thread: %p", [NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"2 thread: %p", [NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"3 thread: %p", [NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"4 thread: %p", [NSThread currentThread]);
});
}
// 结果:
-- ::15.124048 RXVerifyExample[:] 串行异步方法1
-- ::15.124244 RXVerifyExample[:] main thread:0x174076a40
-- ::15.125490 RXVerifyExample[:] thread: 0x174271800
-- ::15.125574 RXVerifyExample[:] thread: 0x174271800
-- ::15.125643 RXVerifyExample[:] thread: 0x174271800
-- ::15.125710 RXVerifyExample[:] thread: 0x174271800

串行异步2

// 串行异步2
- (void)test_queue_serial_async2
{
NSLog(@"串行异步方法2");
dispatch_queue_t queue = dispatch_queue_create("com.demo.0032", DISPATCH_QUEUE_SERIAL);
NSLog(@"main thread:%p", [NSThread mainThread]);
dispatch_async(queue, ^{
NSLog(@"1 thread: %p", [NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"2 thread: %p", [NSThread currentThread]);
});
dispatch_async(queue, ^{
[NSThread sleepForTimeInterval:4.1];
NSLog(@"3 thread: %p", [NSThread currentThread]);
});
dispatch_async(queue, ^{
[NSThread sleepForTimeInterval:3.1];
NSLog(@"4 thread: %p", [NSThread currentThread]);
});
}
// 结果
-- ::16.478508 RXVerifyExample[:] 串行异步方法2
-- ::16.478611 RXVerifyExample[:] main thread:0x170072380
-- ::16.479034 RXVerifyExample[:] thread: 0x174264240
-- ::16.479069 RXVerifyExample[:] thread: 0x174264240
-- ::20.584321 RXVerifyExample[:] thread: 0x174264240
-- ::23.689611 RXVerifyExample[:] thread: 0x174264240

结论:

串行异步只创建一个新的线程

并行异步1

// 并行异步1
- (void)test_queue_concurrent_async1
{
NSLog(@"并行异步方法1");
dispatch_queue_t queue = dispatch_queue_create("com.demo.0041", DISPATCH_QUEUE_CONCURRENT);
NSLog(@"main thread:%p", [NSThread mainThread]);
dispatch_async(queue, ^{
NSLog(@"1 thread: %p", [NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"2 thread: %p", [NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"3 thread: %p", [NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"4 thread: %p", [NSThread currentThread]);
});
} // 结果
-- ::25.692681 RXVerifyExample[:] 并行异步方法1
-- ::25.692880 RXVerifyExample[:] main thread:0x174073000
-- ::25.693828 RXVerifyExample[:] thread: 0x174267d00
-- ::25.693916 RXVerifyExample[:] thread: 0x174267d00
-- ::25.693988 RXVerifyExample[:] thread: 0x174267d00
-- ::25.694056 RXVerifyExample[:] thread: 0x174267d00

并行异步2

// 并行异步2
- (void)test_queue_concurrent_async2
{
NSLog(@"并行异步方法2");
dispatch_queue_t queue = dispatch_queue_create("com.demo.0042", DISPATCH_QUEUE_CONCURRENT);
NSLog(@"main thread:%p", [NSThread mainThread]);
dispatch_async(queue, ^{
NSLog(@"1 thread: %p", [NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"2 thread: %p", [NSThread currentThread]);
});
dispatch_async(queue, ^{
[NSThread sleepForTimeInterval:4.1];
NSLog(@"3 thread: %p", [NSThread currentThread]);
});
dispatch_async(queue, ^{
[NSThread sleepForTimeInterval:3.1];
NSLog(@"4 thread: %p", [NSThread currentThread]);
});
}
// 结果
-- ::27.262009 RXVerifyExample[:] 并行异步方法2
-- ::27.262213 RXVerifyExample[:] main thread:0x17406e080
-- ::27.263710 RXVerifyExample[:] thread: 0x174262e80
-- ::27.263811 RXVerifyExample[:] thread: 0x174262e80
-- ::30.369209 RXVerifyExample[:] thread: 0x1742648c0
-- ::31.369205 RXVerifyExample[:] thread: 0x174262e80

并行异步3

// 并行异步3
- (void)test_queue_concurrent_async3
{
NSLog(@"并行异步方法3");
dispatch_queue_t queue = dispatch_queue_create("com.demo.0043", DISPATCH_QUEUE_CONCURRENT);
NSLog(@"main thread:%p", [NSThread mainThread]);
dispatch_async(queue, ^{
[NSThread sleepForTimeInterval:2.1];
NSLog(@"1 thread: %p", [NSThread currentThread]);
});
dispatch_async(queue, ^{
[NSThread sleepForTimeInterval:1.1];
NSLog(@"2 thread: %p", [NSThread currentThread]);
});
dispatch_async(queue, ^{
[NSThread sleepForTimeInterval:4.1];
NSLog(@"3 thread: %p", [NSThread currentThread]);
});
dispatch_async(queue, ^{
[NSThread sleepForTimeInterval:3.1];
NSLog(@"4 thread: %p", [NSThread currentThread]);
});
}
//结果
-- ::59.926988 RXVerifyExample[:] 并行异步方法3
-- ::59.927184 RXVerifyExample[:] main thread:0x17007f8c0
-- ::01.033209 RXVerifyExample[:] thread: 0x170462ac0
-- ::02.033478 RXVerifyExample[:] thread: 0x170462f40
-- ::03.037799 RXVerifyExample[:] thread: 0x170462a40
-- ::04.033691 RXVerifyExample[:] thread: 0x170462480

从并行异步的三个例子来看。

创建的新的线程的数目是不确定的,是跟队列中异步方法个数和异步方法执行的时间有关。

上一篇:pta第一次总结


下一篇:ASP.NET 中的 Async/Await 简介