Week 1 Quiz - Practical aspects of deep learning(第一周测验 - 深度学习的实践)
\1. If you have 10,000,000 examples, how would you split the train/dev/test set? (如果你有 10,000,000 个样本,你会如何划分训练/开发/测试集?)
【 】98% train . 1% dev . 1% test(训练集占 98% , 开发集占 1% , 测试集占 1%)
答案
对
\2. The dev and test set should: (开发和测试集应该)
【 】Come from the same distribution (来自同一分布)
答案
对
\3.If your Neural Network model seems to have high variance, what of the following would be promising things to try? (如果你的神经网络模型似乎有很高的方差,下列哪个尝试是可能解 决问题的?)
【 】Add regularization(添加正则化)
【 】Get more training data (获取更多的训练数据)
答案
全对
\4. You are working on an automated check-out kiosk for a supermarket, and are building a classifier for apples, bananas and oranges. Suppose your classifier obtains a training set error of 0.5%, and a dev set error of 7%. Which of the following are promising things to try to improve your classifier? (Check all that apply.) (你在一家超市的自动结帐亭工作,正在为苹果,香蕉和橘子制作分类器。 假设您的分类器在训练集上有 0.5%的错误,以及开发集上有7%的错误。 以下哪项尝试是有希望改善你的分类器的分类效果的?)
【 】Increase the regularization parameter lambda (增加正则化参数 lambda)
【 】Get more training data (获取更多的训练数据)
答案
全对
\5. What is weight decay? (什么是权重衰减?)
【 】A regularization technique (such as L2 regularization) that results in gradient descent shrinking the weights on every iteration. (正则化技术(例如 L2 正则化)导致梯度下降在每次迭代时权重收缩。)
答案
对
\6. What happens when you increase the regularization hyperparameter lambda? (当你增加正 则化超参数 lambda 时会发生什么?)
【 】Weights are pushed toward becoming smaller (closer to 0) (权重会变得更小(接近 0))
答案
对
\7. With the inverted dropout technique, at test time: (在测试时候使用 dropout)
【 】You do not apply dropout (do not randomly eliminate units) and do not keep the 1/keep_prob factor in the calculations used in training(不要随机消除节点,也不要在训练中使用的计算中保留 1 / keep_prob 因子)
答案
对
\8. Increasing the parameter keep_prob from (say) 0.5 to 0.6 will likely cause the following: (Check the two that apply) (将参数 keep_prob 从(比如说)0.5 增加到 0.6 可能会导致以下 情况)
【 】Reducing the regularization effect (正则化作用减弱)
【 】Causing the neural network to end up with a lower training set error(使神经网络在结束时会在训练集上表现好一些。)
答案
全对
\9. Which of these techniques are useful for reducing variance (reducing overfitting)? (Check all that apply.) (以下哪些技术可用于减少方差(减少过拟合))
【 】Dropout
【 】L2 regularization (L2 正则化)
【 】Data augmentation(数据增强)
答案
全对
\10. Why do we normalize the inputs x? (为什么我们要归一化输入 x?)
【 】It makes the cost function faster to optimize(它使成本函数更快地进行优化)
答案
对
Week 1 Code Assignments:
✧Course 2 - 改善深层神经网络 - 第一周测验 - 深度学习的实践
✦assignment1_1:Initialization)
https://github.com/phoenixash520/CS230-Code-assignments
✦assignment1_2:Regularization
https://github.com/phoenixash520/CS230-Code-assignments