mmaction2 指南
Outline
3. 添加新的数据集
自定义行为识别数据集
新的数据重新组织到已有格式
重新构建标注文件就行
- 标注格式一:
rawframe标注【路径,帧数,类别】
some/directory-1 163 1
some/directory-2 122 1
some/directory-3 258 2
some/directory-4 234 2
some/directory-5 295 3
some/directory-6 121 3
- 标注格式二:
video标注【路径、类别】
some/path/000.mp4 1
some/path/001.mp4 1
some/path/002.mp4 2
some/path/003.mp4 2
some/path/004.mp4 3
some/path/005.mp4 3
- 标注格式三:
json格式的标注
{
"video1": {
"duration_second": 211.53,
"duration_frame": 6337,
"annotations": [
{
"segment": [
30.025882995319815,
205.2318595943838
],
"label": "Rock climbing"
}
],
"feature_frame": 6336,
"fps": 30.0,
"rfps": 29.9579255898
},
"video2": {
"duration_second": 26.75,
"duration_frame": 647,
"annotations": [
{
"segment": [
2.578755070202808,
24.914101404056165
],
"label": "Drinking beer"
}
],
"feature_frame": 624,
"fps": 24.0,
"rfps": 24.1869158879
}
}
自定义数据集 class
- online转换
继承 BaseDataset 重写 load_annotations(self)
, evaluate(self, results, metrics, logger)
and dump_results(self, results, out)
可参考 RawframeDataset, VideoDataset or ActivityNetDataset.
-
offline转换
修改数据标注文件,让其符合RawframeDataset
,VideoDataset
orActivityNetDataset
的调用形式 -
例子:自己改下标注文件,调用
RawframeDataset
...
# dataset settings
dataset_type = 'RawframeDataset'
data_root = 'path/to/your/root'
data_root_val = 'path/to/your/root_val'
ann_file_train = 'data/custom/custom_train_list.txt'
ann_file_val = 'data/custom/custom_val_list.txt'
ann_file_test = 'data/custom/custom_val_list.txt'
...
data = dict(
videos_per_gpu=32,
workers_per_gpu=4,
train=dict(
type=dataset_type,
ann_file=ann_file_train,
...),
val=dict(
type=dataset_type,
ann_file=ann_file_val,
...),
test=dict(
type=dataset_type,
ann_file=ann_file_test,
...))
...
自定义数据集的例子
annotation.txt
as following
directory,total frames,class
D32_1gwq35E,299,66
-G-5CJ0JkKY,249,254
T4h1bvOd9DA,299,33
4uZ27ivBl00,299,341
0LfESFkfBSw,249,186
-YIsNpBEx6c,299,169
继承BaseDataset
,自定义数据类来加载数据mmaction/datasets/my_dataset.py
import copy
import os.path as osp
import mmcv
from .base import BaseDataset
from .registry import DATASETS
@DATASETS.register_module()
class MyDataset(BaseDataset):
def __init__(self,
ann_file,
pipeline,
data_prefix=None,
test_mode=False,
filename_tmpl='img_{:05}.jpg'):
super(MyDataset, self).__init__(ann_file, pipeline, test_mode)
self.filename_tmpl = filename_tmpl
def load_annotations(self):
video_infos = []
with open(self.ann_file, 'r') as fin:
for line in fin:
if line.startswith("directory"):
continue
frame_dir, total_frames, label = line.split(',')
if self.data_prefix is not None:
frame_dir = osp.join(self.data_prefix, frame_dir)
video_infos.append(
dict(
frame_dir=frame_dir,
total_frames=int(total_frames),
label=int(label)))
return video_infos
def prepare_train_frames(self, idx):
results = copy.deepcopy(self.video_infos[idx])
results['filename_tmpl'] = self.filename_tmpl
return self.pipeline(results)
def prepare_test_frames(self, idx):
results = copy.deepcopy(self.video_infos[idx])
results['filename_tmpl'] = self.filename_tmpl
return self.pipeline(results)
def evaluate(self,
results,
metrics='top_k_accuracy',
topk=(1, 5),
logger=None):
pass
下一步在配置文件中引入新的数据类型
dataset_A_train = dict(
type='MyDataset',
ann_file = ann_file_train,
pipeline=train_pipeline
)
支持混合数据训练
目前支持repeat dataset;可以用来测试模型是否能在数据集子集上overfit
数据类型RepeatDataset
dataset_A_train = dict(
type='RepeatDataset',
times=N,
dataset=dict( # This is the original config of Dataset_A
type='Dataset_A',
...
pipeline=train_pipeline
)
)