[Sdoi2017]序列计数
题目大意:https://www.lydsy.com/JudgeOnline/problem.php?id=4818.
题解:
首先列出来一个递推式子
$f[i][0]$表示$i$个任意数的答案。
$f[i][1]$表示$i$个合数的答案。
转移的时候发现可以用矩阵优化这个过程。
至于怎么把矩阵建出来,我们可以开个桶来解决这个问题。
代码:
#include <bits/stdc++.h> using namespace std; typedef long long ll; const int mod = 20170408 ; char *p1, *p2, buf[100000]; #define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1 ++ ) int rd() { int x = 0; char c = nc(); while (c < 48) { c = nc(); } while (c > 47) { x = (((x << 2) + x) << 1) + (c ^ 48), c = nc(); } return x; } int p, n, m; struct Matr { int a[110][110]; Matr() {memset(a, 0, sizeof a);} friend Matr operator * (const Matr &a, const Matr &b) { Matr re; for (int i = 0; i < p; i ++ ) { for (int j = 0; j < p; j ++ ) { for (int k = 0; k < p; k ++ ) { (re.a[i][j] += (ll)a.a[i][k] * b.a[k][j] % mod) %= mod; } } } return re; } friend Matr operator ^ (Matr x, int y) { Matr re; for (int i = 0; i < p; i ++ ) { re.a[i][i] = 1; } while (y) { if (y & 1) { re = re * x; } y >>= 1; x = x * x; } return re; } }M, A; int bu[110]; bool vis[20000010]; int prime[20000010], cnt; int main() { n = rd(), m = rd(), p = rd(); for (int i = 0; i < p; i ++ ) { bu[i] = m / p; if (i) { if (i <= m % p) { bu[i] ++ ; } } } for (int i = 0; i < p; i ++ ) { for (int j = 0; j < p; j ++ ) { M.a[i][j] = bu[(j - i + p) % p]; } } for (int i = 0; i < p; i ++ ) { A.a[0][i] = bu[i]; } A = A * (M ^ (n - 1)); int ans = A.a[0][0]; vis[1] = true; for (int i = 2; i <= m; i ++ ) { if (!vis[i]) { prime[ ++ cnt] = i; } for (int j = 1; j <= cnt && (ll)i * prime[j] <= m; j ++ ) { vis[i * prime[j]] = true; if (i % prime[j] == 0) { break; } } } for (int i = 1; i <= m; i ++ ) { if (!vis[i]) { bu[i % p] -- ; } } for (int i = 0; i < p; i ++ ) { A.a[0][i] = bu[i]; } for (int i = 0; i < p; i ++ ) { for (int j = 0; j < p; j ++ ) { M.a[i][j] = bu[(j - i + p) % p]; } } A = A * (M ^ (n - 1)); printf("%d\n", (ans - A.a[0][0] + mod) % mod); return 0; }
小结:就是这种求存在的问题,可以转化成全部-不存在。