Removing Blocks
题目链接:https://atcoder.jp/contests/agc028/tasks/agc028_b
数据范围:略。
题解:
这种问题的第一步很套路,就是对于每个$a_i$分开求。
那么对于每个$a_i$应该怎么求呢?
考虑删掉$j$的时候,有$a_i$贡献,有多少种方案。
这样的话,需要保证$i\sim j$中间的所有数都被删掉了。
考虑我们排列组合时候,广义来讲是先放谁都无所谓的。
不妨先把那些应该在$j$后面出现的数先放进去,这样到了放$j$的时候就只有一种方案。
方案数即为$\frac{n!}{len_{(j\rightarrow i)}}$。
这个东西是$O(n^2)$的,用前缀和优化一下变成$O(n)$了。
代码:
#include <bits/stdc++.h> #define N 300010 using namespace std; typedef long long ll; const int mod = 1000000007 ; char *p1, *p2, buf[100000]; #define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1 ++ ) int rd() { int x = 0, f = 1; char c = nc(); while (c < 48) { if (c == '-') f = -1; c = nc(); } while (c > 47) { x = (((x << 2) + x) << 1) + (c ^ 48), c = nc(); } return x * f; } int a[N], fac[N], fac2[N], bfr[N]; int qpow(int x, int y) { int ans = 1; while (y) { if (y & 1) { ans = (ll)ans * x % mod; } y >>= 1; x = (ll)x * x % mod; } return ans; } int main() { int n = rd(); for (int i = 1; i <= n; i ++ ) { a[i] = rd(); } // init fac[0] = 1; for (int i = 1; i <= n; i ++ ) { fac[i] = (ll)fac[i - 1] * i % mod; } for (int i = 1; i <= n; i ++ ) { fac2[i] = (ll)fac[n] * qpow(i, mod - 2) % mod; bfr[i] = (bfr[i - 1] + fac2[i]) % mod; } // for (int i = 1; i <= n; i ++ ) { // printf("%d ", fac[i]); // } // puts(""); // for (int i = 1; i <= n; i ++ ) { // printf("%d ", fac2[i]); // } // puts(""); int ans = 0; for (int i = 1; i <= n; i ++ ) { ans = (ans + (ll)a[i] * ( (((ll)bfr[i] + bfr[n - i + 1]) % mod + mod - fac[n]) % mod )) % mod; } cout << ans << endl ; return 0; }