Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:
Every even integer, greater than 2, can be expressed as the sum of two primes [1].
Now your task is to check whether this conjecture holds for integers up to 107.
Input
Input starts with an integer T (≤ 300), denoting the number of test cases.
Each case starts with a line containing an integer n (4 ≤ n ≤ 107, n is even).
Output
For each case, print the case number and the number of ways you can express n as sum of two primes. To be more specific, we want to find the number of (a, b) where
1) Both a and b are prime
2) a + b = n
3) a ≤ b
Sample Input
2
6
4
Sample Output
Case 1: 1
Case 2: 1
题意:每一个大于2的偶数可以表示为两个素数的和,给出一个数,看看它存在多少种情况。这两个素数必须满足 a + b = n和
a ≤ b。
题解:素数打表。
//埃氏筛选(素数打表)
//哥德巴赫的猜想
//先进行一个素数打表,把数据范围内所有素数存在一个数组内,
//此时已经是从小到大排好的了,然后从数组中的第一个1到最后一个遍历,
//如果n减去该元素的值还是一个素数的话num++,如果该元素大于等于n/2+1,
//结束遍历。输出num的值即可。
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
bool book[10000100];
int su[1000000];
int main()
{
int t;
memset(book,0,sizeof(book));
memset(su,0,sizeof(su));
book[0]=book[1]=1;
int l=0;
for(int i=2; i<10000000; i++)//**********
{
if(book[i]==0)
{
su[l++]=i;
for(int j=i*2; j<10000000; j+=i)
book[j]=1;
}
}
scanf("%d",&t);
int o=1;
while(t--)
{
int n,num=0;
scanf("%d",&n);
for(int i=0; i<l; i++)
{
if(su[i]>=n/2+1)//满足a<=b的情况。
break;
if(book[su[i]]==0)
{
if(book[n-su[i]]==0)
{
num++;
}
}
}
printf("Case %d: %d\n",o++,num);
}
return 0;
}
/*
n==10
su[0]=2,su[1]=3,su[2]=5,su[3]=7.....
可执行的情况: 3+7,5+5
不存在:7+3 su[i]==7时break:(su[i]>=n/2+1)
*/