HashMap基于hashing原理,我们通过put()和get()方法储存和获取对象。当我们将键值对传递给put()方法时,它调用键对象的hashCode()方法来计算hashcode,让后找到bucket位置来储存值对象。当获取对象时,通过键对象的equals()方法找到正确的键值对,然后返回值对象。HashMap使用LinkedList来解决碰撞问题,当发生碰撞了,对象将会储存在LinkedList的下一个节点中。 HashMap在每个LinkedList节点中储存键值对对象。
当两个不同的键对象的hashcode相同时会发生什么? 它们会储存在同一个bucket位置的LinkedList中。键对象的equals()方法用来找到键值对。
在hashMap的基础上,ConcurrentHashMap将数据分为多个segment,默认16个(concurrency level),然后每次操作对一个segment加锁,避免多线程锁得几率,提高并发效率。
默认一个ConcurrentHashMap中有16个子HashMap,所以相当于一个二级哈希。对于所有的操作都是先定位到子HashMap,再作相应的操作。
HashMap的键值对允许有null,但是ConCurrentHashMap都不允许。
Java HashMap的扩容
resize扩容
当hashmap中的元素越来越多的时候,碰撞的几率也就越来越高(因为数组的长度是固定的),所以为了提高查询的效率,就要对hashmap的数组进行扩容,数组扩容这个操作也会出现在ArrayList中,所以这是一个通用的操作,很多人对它的性能表示过怀疑,不过想想我们的“均摊”原理,就释然了,而在hashmap数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是resize。
https://www.cnblogs.com/KingIceMou/p/6976574.html
那么hashmap什么时候进行扩容呢?当hashmap中的元素个数超过数组大小*loadFactor时,就会进行数组扩容,loadFactor的默认值为0.75,也就是说,默认情况下,数组大小为16,那么当hashmap中元素个数超过16*0.75=12的时候,就把数组的大小扩展为2*16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作,所以如果我们已经预知hashmap中元素的个数,那么预设元素的个数能够有效的提高hashmap的性能。比如说,我们有1000个元素new HashMap(1000), 但是理论上来讲new HashMap(1024)更合适,不过上面annegu已经说过,即使是1000,hashmap也自动会将其设置为1024。 但是new HashMap(1024)还不是更合适的,因为0.75*1000 < 1000, 也就是说为了让0.75 * size > 1000, 我们必须这样new HashMap(2048)才最合适,既考虑了&的问题,也避免了resize的问题。