import java.util.ArrayList;
import java.util.Scanner;
/**
* 贝尔曼-福特算法
*
* Bellman - ford算法是求含负权图的单源最短路径算法,效率较低。
* @author CEMABENTENG
*
*/
public class BellmanFord
{
private static int n, m;
private static final int MAXN = 100;
private static final int INF = Integer.MAX_VALUE;
private static ArrayList<Edge> edges = new ArrayList<Edge>();
private static int[][] edge = new int[MAXN][MAXN];
private static int[] dist = new int[MAXN];
private static int[] path = new int[MAXN];
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
while (scan.hasNext())
{
//点
n = scan.nextInt();
//边
m = scan.nextInt();
//初始化点
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
if (i == j)
{
edge[i][j] = 0;
}
else
{
edge[i][j] = INF;
}
}
}
//初始化边
for (int i = 0; i < m; i++)
{
//边左点
int u = scan.nextInt();
//边右点
int v = scan.nextInt();
//权
int w = scan.nextInt();
Edge edge_ = new BellmanFord.Edge();
edge_.u = u;
edge_.v = v;
edge_.w = w;
edge[u][v] = w;
edges.add(edge_);
}
//查找0的距离
bellman(1);
for (int i = 0; i < n; i++)
{
System.out.println("从0到" + i + "的距离最短为 :" + dist[i]);
}
}
}
/**
* 贝尔曼-福特算法
* @param vo
*/
public static void bellman(int vo)
{
int i, k;
for (i = 0; i < n; i++)
{
//初始化所有最短距离
dist[i] = INF;
path[i] = -1;
}
//结果集的起点,起点距离为0
dist[vo] = 0;
//遍历点
for (k = 1; k < n; k++)
{
//遍历边
for (i = 0; i < m; i++)
{
Edge edge = edges.get(i);
/**
* 当前边的左点到原点距离有值,且边的左点到原点的值+当前权小于右点到原点的值,则更新右点到原点的值(即松弛算法)
*
* 每个单源最短路径算法中都会初始化,然后重复对边进行松弛的过程。
* 另外,松弛是改变最短路径和前趋的唯一方式。各个单源最短路径算法间区别在于对每条边进行松弛操作的次数,以及对边执行松弛操作的次序有所不同。在
*/
if (dist[edge.u] != INF && dist[edge.u] + edge.w < dist[edge.v])
{
dist[edge.v] = dist[edge.u] + edge.w;
path[edge.v] = edge.u;
}
}
}
}
public static class Edge
{
int u, v, w;
}
}