文章目录
1. 简介
OrderedDict
是 dict
的子类,一方面这意味着 OrderedDict
支持几乎所有 dict
类的操作和语法,另一方面正如其名字所暗示的一样,OrderedDict
会记录键值对插入的顺序。
2. 使用
2.1 相等检查
实际上,一般而言 OrderedDict
的使用和 dict
别无二致,只是因为前者会记录键值对插入的顺序,所以二者在同类型对象是否相等的比较上会有不同,即在使用 ==
进行相等性判断时,对于两个 dict
的对象,只要二者中键值对数量相同且相同的键所对应的值相同,则 ==
的结果即为 True
,但对于 OrderedDict
来说,要想 ==
判断返回结果为 True
,除了两个对象键值对数量相同且相同的键对应的值相同外,二者中键值对的顺序也必须一致。
import collections
print('dict :', end=' ')
d1 = {'a': 'A', 'b': 'B', 'c': 'C'}
d2 = {'c': 'C', 'b': 'B', 'a': 'A'}
print(d1 == d2)
print('OrderedDict:', end=' ')
d1 = collections.OrderedDict()
d1['a'] = 'A'
d1['b'] = 'B'
d1['c'] = 'C'
d2 = collections.OrderedDict()
d2['c'] = 'C'
d2['b'] = 'B'
d2['a'] = 'A'
print(d1 == d2)
上述代码的输出结果为:
dict : True
OrderedDict: False
2.2 顺序重排
通过使用 OrderedDict
对象的 move_to_end()
方法,可以改变对象中键值对的顺序,使得某个键值对移动至序列的开头或者末尾。
from collections import OrderedDict
d = OrderedDict(
[('a', 'A'), ('b', 'B'), ('c', 'C')]
)
print('Before:')
for k, v in d.items():
print(k, v)
d.move_to_end('b')
print('\nmove_to_end():')
for k, v in d.items():
print(k, v)
d.move_to_end('b', last=False)
print('\nmove_to_end(last=False):')
for k, v in d.items():
print(k, v)
上述代码的输出结果为:
Before:
a A
b B
c C
move_to_end():
a A
c C
b B
move_to_end(last=False):
b B
a A
c C
在上述示例代码中,方法 move_to_end()
的参数 last
用来表示是将 OrderedDict
对象中的元素移动至对象的开头(last=False
)还是末尾(last=True
),默认移动至末尾即 last=True
。
3. 分析
################################################################################
### OrderedDict
################################################################################
class _OrderedDictKeysView(_collections_abc.KeysView):
def __reversed__(self):
yield from reversed(self._mapping)
class _OrderedDictItemsView(_collections_abc.ItemsView):
def __reversed__(self):
for key in reversed(self._mapping):
yield (key, self._mapping[key])
class _OrderedDictValuesView(_collections_abc.ValuesView):
def __reversed__(self):
for key in reversed(self._mapping):
yield self._mapping[key]
class _Link(object):
__slots__ = 'prev', 'next', 'key', '__weakref__'
class OrderedDict(dict):
'Dictionary that remembers insertion order'
# An inherited dict maps keys to values.
# The inherited dict provides __getitem__, __len__, __contains__, and get.
# The remaining methods are order-aware.
# Big-O running times for all methods are the same as regular dictionaries.
# The internal self.__map dict maps keys to links in a doubly linked list.
# The circular doubly linked list starts and ends with a sentinel element.
# The sentinel element never gets deleted (this simplifies the algorithm).
# The sentinel is in self.__hardroot with a weakref proxy in self.__root.
# The prev links are weakref proxies (to prevent circular references).
# Individual links are kept alive by the hard reference in self.__map.
# Those hard references disappear when a key is deleted from an OrderedDict.
def __init__(self, other=(), /, **kwds):
'''Initialize an ordered dictionary. The signature is the same as
regular dictionaries. Keyword argument order is preserved.
'''
try:
self.__root
except AttributeError:
self.__hardroot = _Link()
self.__root = root = _proxy(self.__hardroot)
root.prev = root.next = root
self.__map = {}
self.__update(other, **kwds)
def __setitem__(self, key, value,
dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link):
'od.__setitem__(i, y) <==> od[i]=y'
# Setting a new item creates a new link at the end of the linked list,
# and the inherited dictionary is updated with the new key/value pair.
if key not in self:
self.__map[key] = link = Link()
root = self.__root
last = root.prev
link.prev, link.next, link.key = last, root, key
last.next = link
root.prev = proxy(link)
dict_setitem(self, key, value)
def __delitem__(self, key, dict_delitem=dict.__delitem__):
'od.__delitem__(y) <==> del od[y]'
# Deleting an existing item uses self.__map to find the link which gets
# removed by updating the links in the predecessor and successor nodes.
dict_delitem(self, key)
link = self.__map.pop(key)
link_prev = link.prev
link_next = link.next
link_prev.next = link_next
link_next.prev = link_prev
link.prev = None
link.next = None
def __iter__(self):
'od.__iter__() <==> iter(od)'
# Traverse the linked list in order.
root = self.__root
curr = root.next
while curr is not root:
yield curr.key
curr = curr.next
def __reversed__(self):
'od.__reversed__() <==> reversed(od)'
# Traverse the linked list in reverse order.
root = self.__root
curr = root.prev
while curr is not root:
yield curr.key
curr = curr.prev
def clear(self):
'od.clear() -> None. Remove all items from od.'
root = self.__root
root.prev = root.next = root
self.__map.clear()
dict.clear(self)
def popitem(self, last=True):
'''Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.
'''
if not self:
raise KeyError('dictionary is empty')
root = self.__root
if last:
link = root.prev
link_prev = link.prev
link_prev.next = root
root.prev = link_prev
else:
link = root.next
link_next = link.next
root.next = link_next
link_next.prev = root
key = link.key
del self.__map[key]
value = dict.pop(self, key)
return key, value
def move_to_end(self, key, last=True):
'''Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.
'''
link = self.__map[key]
link_prev = link.prev
link_next = link.next
soft_link = link_next.prev
link_prev.next = link_next
link_next.prev = link_prev
root = self.__root
if last:
last = root.prev
link.prev = last
link.next = root
root.prev = soft_link
last.next = link
else:
first = root.next
link.prev = root
link.next = first
first.prev = soft_link
root.next = link
def __sizeof__(self):
sizeof = _sys.getsizeof
n = len(self) + 1 # number of links including root
size = sizeof(self.__dict__) # instance dictionary
size += sizeof(self.__map) * 2 # internal dict and inherited dict
size += sizeof(self.__hardroot) * n # link objects
size += sizeof(self.__root) * n # proxy objects
return size
update = __update = _collections_abc.MutableMapping.update
def keys(self):
"D.keys() -> a set-like object providing a view on D's keys"
return _OrderedDictKeysView(self)
def items(self):
"D.items() -> a set-like object providing a view on D's items"
return _OrderedDictItemsView(self)
def values(self):
"D.values() -> an object providing a view on D's values"
return _OrderedDictValuesView(self)
__ne__ = _collections_abc.MutableMapping.__ne__
__marker = object()
def pop(self, key, default=__marker):
'''od.pop(k[,d]) -> v, remove specified key and return the corresponding
value. If key is not found, d is returned if given, otherwise KeyError
is raised.
'''
if key in self:
result = self[key]
del self[key]
return result
if default is self.__marker:
raise KeyError(key)
return default
def setdefault(self, key, default=None):
'''Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
'''
if key in self:
return self[key]
self[key] = default
return default
@_recursive_repr()
def __repr__(self):
'od.__repr__() <==> repr(od)'
if not self:
return '%s()' % (self.__class__.__name__,)
return '%s(%r)' % (self.__class__.__name__, list(self.items()))
def __reduce__(self):
'Return state information for pickling'
inst_dict = vars(self).copy()
for k in vars(OrderedDict()):
inst_dict.pop(k, None)
return self.__class__, (), inst_dict or None, None, iter(self.items())
def copy(self):
'od.copy() -> a shallow copy of od'
return self.__class__(self)
@classmethod
def fromkeys(cls, iterable, value=None):
'''Create a new ordered dictionary with keys from iterable and values set to value.
'''
self = cls()
for key in iterable:
self[key] = value
return self
def __eq__(self, other):
'''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive
while comparison to a regular mapping is order-insensitive.
'''
if isinstance(other, OrderedDict):
return dict.__eq__(self, other) and all(map(_eq, self, other))
return dict.__eq__(self, other)