When register on a social network, you are always asked to specify your hobbies in order to find some potential friends with the same hobbies. A social cluster is a set of people who have some of their hobbies in common. You are supposed to find all the clusters.
Input Specification:
Each input file contains one test case. For each test case, the first line contains a positive integer N (≤), the total number of people in a social network. Hence the people are numbered from 1 to N. Then N lines follow, each gives the hobby list of a person in the format:
Ki: hi[1] hi[2] ... hi[Ki]
where Ki (>) is the number of hobbies, and [ is the index of the j-th hobby, which is an integer in [1, 1000].
Output Specification:
For each case, print in one line the total number of clusters in the network. Then in the second line, print the numbers of people in the clusters in non-increasing order. The numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:
8
3: 2 7 10
1: 4
2: 5 3
1: 4
1: 3
1: 4
4: 6 8 1 5
1: 4
Sample Output:
3 4 3 1
1 #include <iostream> 2 #include <numeric> 3 #include <vector> 4 #include <algorithm> 5 using namespace std; 6 int hobby[1005], father[1005]; 7 int findFather(int x) 8 {//查找父亲结点并进行路径压缩 9 if (x == father[x]) 10 return x; 11 int temp = findFather(father[x]); 12 father[x] = temp; 13 return temp; 14 } 15 void unionSet(int a, int b) 16 {//合并两个集合 17 int ua = findFather(a), ub = findFather(b); 18 if (ua != ub) 19 father[ua] = ub;//这里是关键,即将此位置的father改为最近有共同爱好的人 20 } 21 int main() { 22 int n, m, a; 23 cin >> n; 24 for (int i = 0; i <= n; ++i)father[i] = i;//初始化 25 for (int i = 1; i <= n; ++i) 26 { 27 scanf("%d:", &m); 28 while (m--) 29 { 30 cin >> a; 31 if (hobby[a] == 0)//没有人有当前这个爱好 32 hobby[a] = i;//i作为第一个有该爱好的人 33 else//有人喜欢该爱好 34 unionSet(hobby[a], i);//将有同样爱好的两个人合并为一个集合 35 } 36 } 37 vector<int>result(n + 1, 0);//储存每个集合的人数 38 for (int i = 1; i < n + 1; ++i) 39 ++result[findFather(i)];//向前寻找father 40 sort(result.begin(), result.end(), [](int a, int b) {return a > b; }); 41 int cnt = 0; 42 for (auto t : result) 43 if (t != 0) 44 cnt++; 45 cout << cnt << endl; 46 for (int i = 0; i < cnt; ++i)//输出result前cnt个元素(result已经从大到小排序,输出的都是集合个数不为0的) 47 printf("%s%d", i > 0 ? " " : "", result[i]); 48 return 0; 49 }