二叉树各种类型汇总


学习了树的结构类型后,主要对各种树类型进行汇总总结

1 树类型

树中的基本概念:https://jingzh.blog.csdn.net/article/details/107128291
树类型概述:
二叉树,完全二叉树,满二叉树,二叉排序树,平衡二叉树,红黑树,B数,B-树,B+树,B*树

1.1 二叉树

二叉树:二叉树是每个节点最多有两个子树的树结构;
n(n>=0)个结点的有限集合,它或者是空树(n=0),或者是由一个根结点及两颗互不相交的、分别称为左子树和右子树的二叉树所组成

二叉树各种类型汇总
二叉树特点:

  • 每个结点最多有两颗子树,所以二叉树中不存在度(结点拥有的子树数目称为结点的)大于2的结点
  • 左子树和右子树是有顺序的,次序不能任意颠倒
  • 即使树中某结点只有一棵子树,也要区分它是左子树还是右子树

1.2 完全二叉树

完全二叉树:除最后一层外,每一层上的结点数均达到最大值;在最后一层上只缺少右边的若干结点
二叉树各种类型汇总

完全二叉树特点:

  • 叶子结点只能出现在最下层和次下层。
  • 最下层的叶子结点集中在树的左部。
  • 倒数第二层若存在叶子结点,一定在右部连续位置。
  • 如果结点度为1,则该结点只有左孩子,即没有右子树。
  • 同样结点数目的二叉树,完全二叉树深度最小

1.3 满二叉树

除最后一层无任何子节点外,每一层上的所有结点都有两个子结点的二叉树
二叉树各种类型汇总
满二叉树特点:

  • 叶子只能出现在最下一层。出现在其它层就不可能达成平衡。
  • 非叶子结点的度(结点拥有的子树数目称为结点的)一定是2
  • 在同样深度的二叉树中,满二叉树的结点个数最多,叶子数最多

1.4 二叉搜索树(二叉排序树、二叉查找树)

二叉排序树:可以为空树,或者是具备如下性质:若它的左子树不空,则左子树上的所有结点的值均小于根节点的值;若它的右子树不空,则右子树上的所有结点的值均大于根节点的值,左右子树分别为二叉排序树。
如下图所示:
二叉树各种类型汇总
但是还有一种特殊情况:
二叉树各种类型汇总
这种情况下,二叉搜索树已经变更为链表,搜索一个元素的时间复杂度也变成了O(n)出现这种情况的原因是二叉搜索树没有自平衡的机制,所以就有了平衡二叉树

1.5 平衡二叉树

平衡二叉树是一种概念,是二叉查找树的一个进化体,它有几种实现方式:红黑树AVL树
它是一个空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是平衡二叉树,如果插入或者删除一个节点使得高度之差大于1,就要进行节点之间的旋转,将二叉树重新维持在一个平衡状态。

这个方案很好的解决了二叉查找树退化成链表的问题,把插入,查找,删除的时间复杂度最好情况和最坏情况都维持在O(logN)。但是频繁旋转会使插入和删除牺牲掉O(logN)左右的时间,不过相对二叉查找树来说,时间上稳定了很多
二叉树各种类型汇总

1.6 红黑树

1.6.1 红黑树概念

红黑树是一种平衡二叉查找树的变体,它的左右子树高差有可能大于1,所以红黑树不是严格意义上的平衡二叉树(AVL),但对之进行平衡的代价较低, 其平均统计性能要强于 AVL
二叉树各种类型汇总
红黑树的特性:

  • 每个节点或者是黑色,或者是红色
  • 根节点是黑色
  • 每个叶结点是黑色
  • 如果一个节点是红色的,则它的子节点必须是黑色的,红色节点的孩子和父亲都不能是红色。从每个叶子到根的所有路径上不能有两个连续的红色节点,任意一结点到每个叶子结点的路径都包含数量相同的黑结点。确保没有一条路径会比其他路径长出俩倍。因而,红黑树是相对接*衡的二叉树,并不是一个完美平衡二叉查找树

1.6.2 红黑树和AVL树区别

红黑树和AVL树区别
RB-TreeAVL树作为二叉搜索树(BBST),其实现的算法时间复杂度相同,AVL作为最先提出的BBST,貌似RB-tree实现的功能都可以用AVL树是代替,那么为什么还需要引入RB-Tree

  • 红黑树不追求完全平衡,即不像AVL那样要求节点的 高度差的绝对值 <= 1,它只要求部分达到平衡,但是提出了为节点增加颜色,红黑是用非严格的平衡来换取增删节点时候旋转次数的降低,任何不平衡都会在三次旋转之内解决,而AVL是严格平衡树,因此在增加或者删除节点的时候,根据不同情况,旋转的次数比红黑树要多
  • 就插入节点导致树失衡的情况,AVLRB-Tree都是最多两次树旋转来实现复衡rebalance,旋转的量级是O(1)
  • 删除节点导致失衡,AVL需要维护从被删除节点到根节点root这条路径上所有节点的平衡,旋转的量级为O(logN),而RB-Tree最多只需要旋转3次实现复衡,只需O(1),所以说RB-Tree删除节点的rebalance的效率更高,开销更小
  • AVL的结构相较于RB-Tree更为平衡,插入和删除引起失衡,RB-Tree复衡效率更高;当然,由于AVL高度平衡,因此AVL的Search效率更高
  • 针对插入和删除节点导致失衡后的rebalance操作,红黑树能够提供一个比较便宜的解决方案,降低开销,是对searchinsert ,以及delete效率的折衷,总体来说,RB-Tree的统计性能高于AVL
  • 故引入RB-Tree是功能、性能、空间开销的折中结果
    AVL更平衡,结构上更加直观,时间效能针对读取而言更高;维护稍慢,空间开销较大。
    红黑树,读取略逊于AVL,维护强于AVL,空间开销与AVL类似,内容极多时略优于AVL,维护优于AVL。

总结:实际应用中,若搜索的次数远远大于插入和删除,那么选择AVL,如果搜索,插入删除次数几乎差不多,应该选择RB-Tree

1.7 B树类型

1.7.1 B树

一种平衡的多叉树,称为B树(或B-树、B_树)
二叉树各种类型汇总
一棵m阶B树(m阶数:表示此树的结点最多有多少个孩子结点(子树))是一棵平衡的m路搜索树。它或者是空树,或者是满足下列性质的树:

  1. 根结点至少有两个子女;
  2. 每个非根节点所包含的关键字个数 j 满足:┌m/2┐ - 1 <= j <= m - 1;
  3. 除根结点以外的所有结点(不包括叶子结点)的度数正好是关键字总数加1,故内部子树个数 k 满足:┌m/2┐ <= k <= m ;
  4. 所有的叶子结点都位于同一层。

简单理解为:平衡多叉树为B树(每一个子节点上都是有数据的),叶子节点之间无指针相邻

B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;

如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销;但B树在经过多次插入与删除后,有可能导致不同的结构

1.7.2 B-树

B-树是一种多路搜索树(并不是二叉的):

  1. 定义任意非叶子结点最多只有M个儿子;且M>2
  2. 根结点的儿子数为[2, M];
  3. 除根结点以外的非叶子结点的儿子数为[M/2, M];
  4. 每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
  5. 非叶子结点的关键字个数=指向儿子的指针个数-1;
  6. 非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
  7. 非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
  8. 所有叶子结点位于同一层;

B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;

B-树的特性:

  1. 关键字集合分布在整颗树中;
  2. 任何一个关键字出现且只出现在一个结点中;
  3. 搜索有可能在非叶子结点结束;
  4. 其搜索性能等价于在关键字全集内做一次二分查找;
  5. 自动层次控制;

由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少利用率,其最底搜索性能为:

其中,M为设定的非叶子结点最多子树个数,N为关键字总数;
所以B-树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题;

由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并;

1.7.3 B+树

B+树是B树的一种变形形式,B+树上的叶子结点存储关键字以及相应记录的地址,叶子结点以上各层作为索引使用。一棵m阶的B+树定义如下

  1. 每个结点至多有m个子女;
  2. 除根结点外,每个结点至少有[m/2]个子女,根结点至少有两个子女;
  3. 有k个子女的结点必有k个关键字

B+树的查找与B树不同,当索引部分某个结点的关键字与所查的关键字相等时,并不停止查找,应继续沿着这个关键字左边的指针向下,一直查到该关键字所在的叶子结点为止。
二叉树各种类型汇总

1.7.4 B*树

B*树B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;
B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2);

B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;所以,B*树分配新结点的概率比B+树要低,空间使用率更高

B树类型总结:

  • B树:二叉树,每个结点只存储一个关键字,等于则命中,小于走左结点,大于走右结点;
  • B-树:多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键字范围的子结点;所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;
  • B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;
  • B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3

二叉树各种类型汇总

上一篇:数据级并行技术


下一篇:PaddleOCR系列(二)--PaddleServing & PaddleHub Serving服务部署