一、shell 查询
hbase 查询相当简单,提供了get和scan两种方式,也不存在多表联合查询的问题。复杂查询需通过hive创建相应外部表,用sql语句自动生成mapreduce进行。
但是这种简单,有时为了达到目的,也不是那么顺手。至少和sql查询方式相差较大。
hbase 提供了很多过滤器,可对行键,列,值进行过滤。过滤方式可以是子串,二进制,前缀,正则比较等。条件可以是AND,OR等 组合。所以通过过滤,还是能满足需求,找到正确的结果的。
1.1 过滤器类型
HBase 最新官方文档中文版(http://abloz.com/hbase/book.html)中有对过滤器的描述。过滤器分为5种类型:
- 构造型过滤器:用于包含其他一组过滤器的过滤器。包括:FilterList
- 列值型过滤器:对每列的值进行过滤的. 相当于sql查询中的=和like 包括:
SingleColumnValueFilter
比较器,包括:
RegexStringComparator 支持值比较的正则表达式
SubstringComparator 用于检测一个子串是否存在于值中。大小写不敏感。
BinaryPrefixComparator 二进制前缀比较
BinaryComparator 二进制比较 - 键值元数据过滤器:用于对列进行过滤的。包括:
FamilyFilter 用于过滤列族。 通常,在Scan中选择ColumnFamilie优于在过滤器中做。
QualifierFilter 用于基于列名(即 Qualifier)过滤.
ColumnPrefixFilter 可基于列名(即Qualifier)前缀过滤。
MultipleColumnPrefixFilter 和 ColumnPrefixFilter 行为差不多,但可以指定多个前缀。
ColumnRangeFilter 可以进行高效内部扫描。 - Rowkey:对行键进行过滤。通常认为行选择时Scan采用 startRow/stopRow 方法比较好。然而 RowFilter 也可以用。
- 工具:如FirstKeyOnlyFilter用于统计行数。
二、示例
1.FirstKeyOnlyFilter,一种方便的计算行数的过滤器
hbase(main):002:0> scan 'toplist_ware_ios_1009_201231',{COLUMNS=>'info',FILTER=>"(FirstKeyOnlyFilter())"}
0000000001 column=info:loginid, timestamp=1343625459713, value=jjm168131013
0000000002 column=info:loginid, timestamp=1343625459713, value=loveswh
...
21 row(s) in 0.5480 seconds
2.列名子串进行过滤
hbase(main):006:0> scan 'toplist_ware_ios_1009_201231',{COLUMNS=>['info:'],FILTER=>"(QualifierFilter(=,'substring:id'))"}
ROW COLUMN+CELL
0000000001 column=info:loginid, timestamp=1343625459713, value=jjm168131013
0000000001 column=info:userid, timestamp=1343625459713, value=168131013
0000000002 column=info:loginid, timestamp=1343625459713, value=loveswh
0000000002 column=info:userid, timestamp=1343625459713, value=100898152 hbase(main):005:0> scan 'toplist_ware_ios_1009_201231',{COLUMNS=>['info:loginid'],FILTER=>"(QualifierFilter(=,'substring:id'))"}
ROW COLUMN+CELL
0000000001 column=info:loginid, timestamp=1343625459713, value=jjm168131013
0000000002 column=info:loginid, timestamp=1343625459713, value=loveswh hbase(main):007:0> scan 'toplist_ware_ios_1009_201231',{COLUMNS=>['info:'],FILTER=>"(QualifierFilter(=,'substring:nid'))"}
ROW COLUMN+CELL
0000000001 column=info:loginid, timestamp=1343625459713, value=jjm168131013
0000000002 column=info:loginid, timestamp=1343625459713, value=loveswh hbase(main):008:0> scan 'toplist_ware_ios_1009_201231',{COLUMNS=>['info:'],FILTER=>"(QualifierFilter(=,'substring:nick'))"}
ROW COLUMN+CELL
0000000001 column=info:nick, timestamp=1343625459713, value=\xE5\xAE\xB6\xE6\x9C\x89\xE8\x99\x8E\xE5\xAE\x9
D
0000000002 column=info:nick, timestamp=1343625459713, value=loveswh08
3.Value 过滤
3.1 正则过滤
hbase(main):004:0> scan 'toplist_ware_ios_1009_201231',{COLUMNS=>'info',FILTER=>"(SingleColumnValueFilter('info','nick',=,'regexstring:.*99',true,true))"}
ROW COLUMN+CELL
0000000009 column=info:loginid, timestamp=1343625459713, value=zgh1968
0000000009 column=info:nick, timestamp=1343625459713, value=zwy99
0000000009 column=info:score, timestamp=1343625459713, value=5
0000000009 column=info:userid, timestamp=1343625459713, value=100366262
1 row(s) in 0.2520 seconds 3.2 子串
需导入
import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.util.Bytes hbase(main):028:0> scan 'toplist_ware_ios_1001_201231',{COLUMNS =>'info:nick', FILTER=>SingleColumnValueFilter.new(Bytes.toBytes('info'),Bytes.toBytes('nick'),CompareFilter::CompareOp.valueOf('EQUAL'),SubstringComparator.new('8888'))}
ROW COLUMN+CELL
0000000002 column=info:nick, timestamp=1343625446556, value=\xE7\x81\x8F????\xE3\x81\x8A??8888
1 row(s) in 0.0330 seconds 3.3 二进制
子串等不支持多字节文字,所以用二进制来进行比较
hbase(main):010:0> scan 'toplist_ware_ios_1009_201231',{COLUMNS=>['info:'],FILTER=>"(QualifierFilter(=,'substring:nick') AND ValueFilter(=,'binary:7789\xE6\xB4\x81') )"}
ROW COLUMN+CELL
0000000016 column=info:nick, timestamp=1343625459713, value=7789\xE6\xB4\x81
1 row(s) in 0.1710 seconds
4 综合列名子串和值二进制比较
hbase(main):012:0> scan 'toplist_ware_ios_1009_201231',{COLUMNS=>['info:'],FILTER=>"(QualifierFilter(=,'substring:nick') AND ValueFilter(=,'binary:7789\xE6\xB4\x81') )"}
ROW COLUMN+CELL
0000000016 column=info:nick, timestamp=1343625459713, value=7789\xE6\xB4\x81
1 row(s) in 0.0120 seconds
hbase(main):014:0> scan 'toplist_ware_ios_1009_201231',{COLUMNS=>"info:",FILTER=>"(PrefixFilter('000000002')) AND (QualifierFilter(=,'substring:nick')"}
ROW COLUMN+CELL
0000000020 column=info:nick, timestamp=1343625459713, value=Denny_feng
0000000021 column=info:nick, timestamp=1343625459713, value=\xE5\xB0\x8F\xE7\xBD\x97\xE6\x95\x99\xE7\xBB\x8
31
2 row(s) in 0.0440 seconds
5. 行查询
hbase(main):005:0> get 'toplist_ware_ios_1009_201231','0000000009'
COLUMN CELL
info:loginid timestamp=1343625459713, value=zgh1968
info:nick timestamp=1343625459713, value=zwy99
info:score timestamp=1343625459713, value=5
info:userid timestamp=1343625459713, value=100366262
4 row(s) in 0.1000 seconds
hbase(main):006:0> get 'toplist_ware_ios_1009_201231','0000000009','info:nick'
COLUMN CELL
info:nick timestamp=1343625459713, value=zwy99
1 row(s) in 0.0100 seconds
hbase(main):009:0> scan 'toplist_ware_ios_1009_201231',FILTER=>"PrefixFilter('000000002')"
ROW COLUMN+CELL
0000000020 column=info:loginid, timestamp=1343625459713, value=jjm169212318
0000000020 column=info:nick, timestamp=1343625459713, value=Denny_feng
0000000020 column=info:score, timestamp=1343625459713, value=1
0000000020 column=info:userid, timestamp=1343625459713, value=169212318
0000000021 column=info:loginid, timestamp=1343625459713, value=jjm169371841
0000000021 column=info:nick, timestamp=1343625459713, value=\xE5\xB0\x8F\xE7\xBD\x97\xE6\x95\x99\xE7\xBB\x8
31
0000000021 column=info:score, timestamp=1343625459713, value=1
0000000021 column=info:userid, timestamp=1343625459713, value=169371841
2 row(s) in 0.0180 seconds
hbase(main):010:0> scan 'toplist_ware_ios_1009_201231',FILTER=>"PrefixFilter('000000002')",LIMIT=>1
ROW COLUMN+CELL
0000000020 column=info:loginid, timestamp=1343625459713, value=jjm169212318
0000000020 column=info:nick, timestamp=1343625459713, value=Denny_feng
0000000020 column=info:score, timestamp=1343625459713, value=1
0000000020 column=info:userid, timestamp=1343625459713, value=169212318
1 row(s) in 0.0170 seconds
hbase(main):011:0> scan 'toplist_ware_ios_1009_201231',{COLUMNS=>"info:nick",FILTER=>"PrefixFilter('000000002')",LIMIT=>1}
ROW COLUMN+CELL
0000000020 column=info:nick, timestamp=1343625459713, value=Denny_feng
1 row(s) in 0.0160 seconds