P1535 游荡的奶牛
题目描述
Searching for the very best grass, the cows are travelling about the pasture which is represented as a grid with N rows and M columns (2 <= N <= 100; 2 <= M <= 100). Keen observer Farmer John has recorded Bessie's position as (R1, C1) at a certain time and then as (R2, C2) exactly T (0 < T <= 15) seconds later. He's not sure if she passed through (R2, C2) before T seconds, but he knows she is there at time T.
FJ wants a program that uses this information to calculate an integer S that is the number of ways a cow can go from (R1, C1) to (R2, C2) exactly in T seconds. Every second, a cow can travel from any position to a vertically or horizontally neighboring position in the pasture each second (no resting for the cows). Of course, the pasture has trees through which no cow can travel.
Given a map with '.'s for open pasture space and '*' for trees, calculate the number of possible ways to travel from (R1, C1) to (R2, C2) in T seconds.
奶牛们在被划分成N行M列(2 <= N <= 100; 2 <= M <= 100)的草地上游走, 试图找到整块草地中最美味的牧草。Farmer John在某个时刻看见贝茜在位置 (R1, C1),恰好T (0 < T <= 15)秒后,FJ又在位置(R2, C2)与贝茜撞了正着。 FJ并不知道在这T秒内贝茜是否曾经到过(R2, C2),他能确定的只是,现在贝茜 在那里。 设S为奶牛在T秒内从(R1, C1)走到(R2, C2)所能选择的路径总数,FJ希望有 一个程序来帮他计算这个值。每一秒内,奶牛会水平或垂直地移动1单位距离( 奶牛总是在移动,不会在某秒内停在它上一秒所在的点)。草地上的某些地方有 树,自然,奶牛不能走到树所在的位置,也不会走出草地。 现在你拿到了一张整块草地的地形图,其中'.'表示平坦的草地,'*'表示 挡路的树。你的任务是计算出,一头在T秒内从(R1, C1)移动到(R2, C2)的奶牛 可能经过的路径有哪些。
输入输出格式
输入格式:
第1 行: 3 个用空格隔开的整数:N,M,T 。 第2..N+1 行: 第i+1 行为M 个连续的字符,描述了草地第i 行各点的情况,保证字符是'.'和'*'中的一个。 第N+2 行: 4 个用空格隔开的整数:R1,C1,R2,C2 。
输出格式:
第1 行: 输出S,含义如题中所述。
输入输出样例
4 5 6
...*.
...*.
.....
.....
1 3 1 5
1
说明
样例说明:
草地被划分成4 行5 列,奶牛在6 秒内从第1 行第3 列走到了第1 行第5 列。
奶牛在6 秒内从(1,3)走到(1,5)的方法只有一种(绕过她面前的树)
居然可以用动规!!!
f[k][i][j] 表示第 k 秒到达 (i,j) 的方案
#include<cstdio>
#include<iostream> using namespace std;
const int N = ; int f[][N][N];
int mp[N][N];
int dx[] = {,,,-};
int dy[] = {,-,,};
int n,m,t,sx,sy,ex,ey;
char ch; int main()
{
scanf("%d%d%d",&n,&m,&t);
for(int i=;i<=n;++i)
for(int j=;j<=m;++j)
{
cin>>ch;
if(ch=='.') mp[i][j] = ;
}
scanf("%d%d%d%d",&sx,&sy,&ex,&ey);
f[][sx][sy] = ;
for(int k=;k<=t;++k)
for(int i=;i<=n;++i)
for(int j=;j<=m;++j)
if(mp[i][j]) for(int h=;h<;++h)
{
int xx = i+dx[h];
int yy = j+dy[h];
if(xx> && yy> && xx<=n && yy<=m && mp[xx][yy])
f[k][i][j] += f[k-][xx][yy];
}
printf("%d",f[t][ex][ey]);
return ;
}