1 import tensorflow as tf 2 print(tf.__version__) 3 4 5 class BottleNeck(tf.keras.layers.Layer): 6 def __init__(self, growth_rate, drop_rate): 7 super(BottleNeck, self).__init__() 8 self.bn1 = tf.keras.layers.BatchNormalization() 9 self.conv1 = tf.keras.layers.Conv2D(filters=4 * growth_rate, 10 kernel_size = (1, 1), 11 strides=1, 12 padding=‘same‘) 13 self.bn2 = tf.keras.layers.BatchNormalization() 14 self.conv2 = tf.keras.layers.Conv2D(filters=growth_rate, 15 kernel_size = (3, 3), 16 strides=1, 17 padding=‘same‘) 18 self.dropout = tf.keras.layers.Dropout(rate=drop_rate) 19 20 self.listLayers = [self.bn1, 21 tf.keras.layers.Activation(‘relu‘), 22 self.conv1, 23 self.bn2, 24 tf.keras.layers.Activation(‘relu‘), 25 self.conv2, 26 self.dropout] 27 28 def call(self, x): 29 y = x 30 for layer in self.listLayers.layers: 31 y = layer(y) 32 y = tf.keras.layers.concatenate([x, y], axis=-1) 33 return y 34 35 36 # 稠密块由多个BottleNeck组成,每块使用相同的输出通道数 37 38 class DenseBlock(tf.keras.layers.Layer): 39 def __init__(self, num_layers, growth_rate, drop_rate=0.5): 40 super(DenseBlock, self).__init__() 41 self.num_layers = num_layers 42 self.growth_rate = growth_rate 43 self.drop_rate = drop_rate 44 self.listLayers = [] 45 for _ in range(num_layers): 46 self.listLayers.append(BottleNeck(growth_rate=self.growth_rate, drop_rate=self.drop_rate)) 47 48 def call(self, x): 49 for layer in self.listLayers.layers: 50 x = layer(x) 51 return x 52 53 54 class TransitionLayer(tf.keras.layers.Layer): 55 def __init__(self, out_channels): 56 super(TransitionLayer,self).__init__() 57 self.bn = tf.keras.layers.BatchNormalization() 58 self.conv = tf.keras.layers.Conv2D(filters=out_channels, 59 kernel_size=(1, 1), 60 strides=1, 61 padding=‘same‘) 62 self.pool = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), 63 strides=2, 64 padding=‘same‘) 65 66 def call(self, inputs): 67 x = self.bn(inputs) 68 x = tf.keras.activations.relu(x) 69 x = self.conv(x) 70 x = self.pool(x) 71 return x 72 73 74 blk = TransitionLayer(10) 75 blk(Y).shape 76 77 78 class DenseNet(tf.keras.Model): 79 def __init__(self, num_init_features, growth_rate, block_layers, compression_rate, drop_rate): 80 super(DenseNet, self).__init__() 81 self.conv = tf.keras.layers.Conv2D(filters=num_init_features, 82 kernel_size=(7, 7), 83 strides=2, 84 padding=‘same‘) 85 self.bn = tf.keras.layers.BatchNormalization() 86 self.pool = tf.keras.layers.MaxPooling2D(pool_size=(3, 3), 87 strides=2, 88 padding=‘same‘) 89 self.num_channels = num_init_features 90 self.dense_block_1 = DenseBlock(num_layers=block_layers[0], growth_rate=growth_rate, drop_rate=drop_rate) 91 self.num_channels += growth_rate * block_layers[0] 92 self.num_channels = compression_rate * self.num_channels 93 self.transition_1 = TransitionLayer(out_channels=int(self.num_channels)) 94 self.dense_block_2 = DenseBlock(num_layers=block_layers[1], growth_rate=growth_rate, drop_rate=drop_rate) 95 self.num_channels += growth_rate * block_layers[1] 96 self.num_channels = compression_rate * self.num_channels 97 self.transition_2 = TransitionLayer(out_channels=int(self.num_channels)) 98 self.dense_block_3 = DenseBlock(num_layers=block_layers[2], growth_rate=growth_rate, drop_rate=drop_rate) 99 self.num_channels += growth_rate * block_layers[2] 100 self.num_channels = compression_rate * self.num_channels 101 self.transition_3 = TransitionLayer(out_channels=int(self.num_channels)) 102 self.dense_block_4 = DenseBlock(num_layers=block_layers[3], growth_rate=growth_rate, drop_rate=drop_rate) 103 104 self.avgpool = tf.keras.layers.GlobalAveragePooling2D() 105 self.fc = tf.keras.layers.Dense(units=10, activation=tf.keras.activations.softmax) 106 107 def call(self, inputs): 108 x = self.conv(inputs) 109 x = self.bn(x) 110 x = tf.keras.activations.relu(x) 111 x = self.pool(x) 112 113 x = self.dense_block_1(x) 114 x = self.transition_1(x) 115 x = self.dense_block_2(x) 116 x = self.transition_2(x) 117 x = self.dense_block_3(x) 118 x = self.transition_3(x) 119 x = self.dense_block_4(x) 120 121 x = self.avgpool(x) 122 x = self.fc(x) 123 return x 124 125 126 127 def densenet(): 128 return DenseNet(num_init_features=64, growth_rate=32, block_layers=[4, 4, 4, 4], compression_rate=0.5, drop_rate=0.5) 129 130 mynet = densenet() 131 132 133 X = tf.random.uniform(shape=(1, 96, 96, 1)) 134 for layer in mynet.layers: 135 X = layer(X) 136 print(layer.name, ‘ouput shape:\t‘, X.shape) 137 138 139 (x_train, y_train), (x_test, y_test) = tf.keras.datasets.fashion_mnist.load_data() 140 x_train = x_train.reshape((60000, 28, 28, 1)).astype(‘float32‘) / 255 141 x_test = x_test.reshape((10000, 28, 28, 1)).astype(‘float32‘) / 255 142 143 mynet.compile(loss=‘sparse_categorical_crossentropy‘, 144 optimizer = tf.keras.optimizers.Adam(), 145 metrics=[‘accuracy‘]) 146 147 history = mynet.fit(x_train, y_train, 148 batch_size=64, 149 epochs=5, 150 validation_split=0.2) 151 152 test_scores = mynet.evaluate(x_test, y_test, verbose=2)