一、词频统计:
1.读文本文件生成RDD lines
2.将一行一行的文本分割成单词 words flatmap()
lines=sc.textFile("file:///usr/local/spark/mycode/rdd/word.txt")
lines.foreach(print)
words=lines.flatMap(lambda line:line.split())
words.foreach(print)
3.全部转换为小写 lower()
4.去掉长度小于3的单词 filter()
5.去掉停用词
wordsxx=lines.map(lambda word:word.lower())
wordsxx.foreach(print)
word=words.filter(lambda words:len(words)>2)
word.foreach(print)
lines=textFile("file:///usr/local/spark/mycode/rdd/word.txt")
with open("/usr/lcaol/spark/mycode/rdd/stopwords.txt") as f:
stops=f.read().split()
lines.flatMap(lambda line:line.split()).filter(lambda word:word not in stops).collect()
6.转换成键值对 map()
7.统计词频 reduceByKey()
words.map(lambda word:(word,1)).collect()
words.map(lambda word:(word,1)).reduceByKey(lambda a,b:a+b).collect()
二、学生课程分数 groupByKey()
-- 按课程汇总全总学生和分数
1. 分解出字段 map()
2. 生成键值对 map()
3. 按键分组
4. 输出汇总结果
lines=textFile("file:///usr/local/spark/mycode/rdd/xs.txt")
groupKm=lines.map(lambda line:line.split(',')).map(lambda line:(line[1],1)).groupByKey()
groupKm.foreach(print)
三、学生课程分数 reduceByKey()
-- 每门课程的选修人数
lines=textFile("file///usr/local/spark/mycode/rdd/xs.txt")
groupKm=lines.map(lambda line:line.split(',')).map(lambda line:(line[1],1)).reduceByKey(lambda a,b:a+b)
groupKm.foreach(print)
-- 每个学生的选修课程数
groupName=lines.map(lambda line:line.split(',')).map(lambda line:(line[0],1)).reduceByKey(lambda a,b:a+b)
groupName.foreach(print)