java ->多线程_线程同步、死锁、等待唤醒机制

线程安全

如果有多个线程在同时运行,而这些线程可能会同时运行这段代码。程序每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的。

l  我们通过一个案例,演示线程的安全问题:

电影院要卖票,我们模拟电影院的卖票过程。假设要播放的电影是 “功夫熊猫3”,本次电影的座位共100个(本场电影只能卖100张票)。

我们来模拟电影院的售票窗口,实现多个窗口同时卖 “功夫熊猫3”这场电影票(多个窗口一起卖这100张票)

需要窗口,采用线程对象来模拟;需要票,Runnable接口子类来模拟

l  测试类

public class ThreadDemo {

public static void main(String[] args) {

//创建票对象

Ticket ticket = new Ticket();

//创建3个窗口

Thread t1  = new Thread(ticket, "窗口1");

Thread t2  = new Thread(ticket, "窗口2");

Thread t3  = new Thread(ticket, "窗口3");

t1.start();

t2.start();

t3.start();

}

}

l  模拟票

public class Ticket implements Runnable {

//共100票

int ticket = 100;

@Override

public void run() {

//模拟卖票

while(true){

if (ticket > 0) {

//模拟选坐的操作

try {

Thread.sleep(1);

} catch (InterruptedException e) {

e.printStackTrace();

}

System.out.println(Thread.currentThread().getName() + "正在卖票:" + ticket--);

}

}

}

}

运行结果发现:上面程序出现了问题

l  票出现了重复的票

l  错误的票 0、-1

其实,线程安全问题都是由全局变量及静态变量引起的。若每个线程中对全局变量、静态变量只有读操作,而无写操作,一般来说,这个全局变量是线程安全的;若有多个线程同时执行写操作,一般都需要考虑线程同步,否则的话就可能影响线程安全。

线程同步(线程安全处理Synchronized)

java中提供了线程同步机制,它能够解决上述的线程安全问题。

线程同步的方式有两种:

l  方式1:同步代码块

l  方式2:同步方法

同步代码块

同步代码块: 在代码块声明上 加上synchronized

synchronized (锁对象) {

可能会产生线程安全问题的代码

}

同步代码块中的锁对象可以是任意的对象;但多个线程时,要使用同一个锁对象才能够保证线程安全。

使用同步代码块,对电影院卖票案例中Ticket类进行如下代码修改:

public class Ticket implements Runnable {

//共100票

int ticket = 100;

//定义锁对象

Object lock = new Object();

@Override

public void run() {

//模拟卖票

while(true){

//同步代码块

synchronized (lock){

if (ticket > 0) {

//模拟电影选坐的操作

try {

Thread.sleep(10);

} catch (InterruptedException e) {

e.printStackTrace();

}

System.out.println(Thread.currentThread().getName() + "正在卖票:" + ticket--);

}

}

}

}

}

当使用了同步代码块后,上述的线程的安全问题,解决了。

同步方法

l  同步方法:在方法声明上加上synchronized

public synchronized void method(){

可能会产生线程安全问题的代码

}

 同步方法中的锁对象是 this

使用同步方法,对电影院卖票案例中Ticket类进行如下代码修改:

public class Ticket implements Runnable {

//共100票

int ticket = 100;

//定义锁对象

Object lock = new Object();

@Override

public void run() {

//模拟卖票

while(true){

//同步方法

method();

}

}

//同步方法,锁对象this

public synchronized void method(){

if (ticket > 0) {

//模拟选坐的操作

try {

Thread.sleep(10);

} catch (InterruptedException e) {

e.printStackTrace();

}

System.out.println(Thread.currentThread().getName() + "正在卖票:" + ticket--);

}

}

}

l  静态同步方法: 在方法声明上加上static synchronized

public static synchronized void method(){

可能会产生线程安全问题的代码

}

静态同步方法中的锁对象是 类名.class(本类的字节码文件对象)

死锁

同步锁使用的弊端:当线程任务中出现了多个同步(多个锁)时,如果同步中嵌套了其他的同步。这时容易引发一种现象:程序出现无限等待,这种现象我们称为死锁。这种情况能避免就避免掉。

  synchronzied(A锁){

   synchronized(B锁){

   }

  }

我们进行下死锁情况的代码演示:

l  定义锁对象类

public class MyLock {

public static final Object lockA = new Object();

public static final Object lockB = new Object();

}

l  线程任务类

public class ThreadTask implements Runnable {

int x = new Random().nextInt(1);//0,1

//指定线程要执行的任务代码

@Override

public void run() {

while(true){

if (x%2 ==0) {

//情况一

synchronized (MyLock.lockA) {

System.out.println("if-LockA");

synchronized (MyLock.lockB) {

System.out.println("if-LockB");

System.out.println("if大口吃肉");

}

}

} else {

//情况二

synchronized (MyLock.lockB) {

System.out.println("else-LockB");

synchronized (MyLock.lockA) {

System.out.println("else-LockA");

System.out.println("else大口吃肉");

}

}

}

x++;

}

}

}

l  测试类

public class ThreadDemo {

public static void main(String[] args) {

//创建线程任务类对象

ThreadTask task = new ThreadTask();

//创建两个线程

Thread t1 = new Thread(task);

Thread t2 = new Thread(task);

//启动线程

t1.start();

t2.start();

}

}

Lock接口

查阅API,查阅Lock接口描述,Lock 实现提供了比使用 synchronized 方法和语句可获得的更广泛的锁定操作。

l  Lock接口中的常用方法

Lock提供了一个更加面对对象的锁,在该锁中提供了更多的操作锁的功能。

我们使用Lock接口,以及其中的lock()方法和unlock()方法替代同步,对电影院卖票案例中Ticket类进行如下代码修改:

public class Ticket implements Runnable {

//共100票

int ticket = 100;

//创建Lock锁对象

Lock ck = new ReentrantLock();

@Override

public void run() {

//模拟卖票

while(true){

//synchronized (lock){

ck.lock();

if (ticket > 0) {

//模拟选坐的操作

try {

Thread.sleep(10);

} catch (InterruptedException e) {

e.printStackTrace();

}

System.out.println(Thread.currentThread().getName() + "正在卖票:" + ticket--);

}

ck.unlock();

//}

}

}

}

等待唤醒机制

在开始讲解等待唤醒机制之前,有必要搞清一个概念——线程之间的通信:多个线程在处理同一个资源,但是处理的动作(线程的任务)却不相同。通过一定的手段使各个线程能有效的利用资源。而这种手段即—— 等待唤醒机制。

等待唤醒机制所涉及到的方法:

l  wait() :等待,将正在执行的线程释放其执行资格 和 执行权,并存储到线程池中。

l  notify():唤醒,唤醒线程池中被wait()的线程,一次唤醒一个,而且是随机的。

l  notifyAll(): 唤醒全部:可以将线程池中的所有wait() 线程都唤醒。

其实,所谓唤醒的意思就是让 线程池中的线程具备执行资格。必须注意的是,这些方法都是在 同步中才有效。同时这些方法在使用时必须标明所属锁,这样才可以明确出这些方法操作的到底是哪个锁上的线程。

仔细查看JavaAPI之后,发现这些方法 并不定义在 Thread中,也没定义在Runnable接口中,却被定义在了Object类中,为什么这些操作线程的方法定义在Object类中?

因为这些方法在使用时,必须要标明所属的锁,而锁又可以是任意对象。能被任意对象调用的方法一定定义在Object类中。

接下里,我们先从一个简单的示例入手:

如上图说示,输入线程向Resource中输入name ,sex , 输出线程从资源中输出,先要完成的任务是:

l  1.当input发现Resource中没有数据时,开始输入,输入完成后,叫output来输出。如果发现有数据,就wait();

l  2.当output发现Resource中没有数据时,就wait() ;当发现有数据时,就输出,然后,叫醒input来输入数据。

下面代码,模拟等待唤醒机制的实现:

l  模拟资源类

public class Resource {

private String name;

private String sex;

private boolean flag = false;

public synchronized void set(String name, String sex) {

if (flag)

try {

wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

// 设置成员变量

this.name = name;

this.sex = sex;

// 设置之后,Resource中有值,将标记该为 true ,

flag = true;

// 唤醒output

this.notify();

}

public synchronized void out() {

if (!flag)

try {

wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

// 输出线程将数据输出

System.out.println("姓名: " + name + ",性别: " + sex);

// 改变标记,以便输入线程输入数据

flag = false;

// 唤醒input,进行数据输入

this.notify();

}

}

l  输入线程任务类

public class Input implements Runnable {

private Resource r;

public Input(Resource r) {

this.r = r;

}

@Override

public void run() {

int count = 0;

while (true) {

if (count == 0) {

r.set("小明", "男生");

} else {

r.set("小花", "女生");

}

// 在两个数据之间进行切换

count = (count + 1) % 2;

}

}

}

l  输出线程任务类

public class Output implements Runnable {

private Resource r;

public Output(Resource r) {

this.r = r;

}

@Override

public void run() {

while (true) {

r.out();

}

}

}

l  测试类

public class ResourceDemo {

public static void main(String[] args) {

// 资源对象

Resource r = new Resource();

// 任务对象

Input in = new Input(r);

Output out = new Output(r);

// 线程对象

Thread t1 = new Thread(in);

Thread t2 = new Thread(out);

// 开启线程

t1.start();

t2.start();

}

}

上一篇:codeforces 484B B. Maximum Value(二分)


下一篇:多线程模块的同步机制event对象