NLP学习路线
开始记录学习nlp,学习路线参考博主的建议,后续把这部分的内容进行整理。
文章目录
前言
要学好NLP,下面3个是缺一不可的: 1. 机器学习基础 人工智能很多技术和模块是搭建在机器学习基础上的,无论是CV,NLP,语音识别。可以直接去学习一个方向,也能学到东西。 但是可能不能很好的理解技术和模型背后的细节。 2. 数据结构与算法 在工程上写一个算法,如果不懂数据结构和算法,写出来的程序可能效率不高,达不到上线的要求。所以要懂数据结构和算法,才能写出最优化,性能高的程序。 3. 良好的编程基础 有良好的编程基础才能写出好的程序,不只是会讲讲理论,还能够实现出来,达到落地的地步。 在有了上面的基础后,学完自然语言的基础知识。然后需要在NLP里选择一个技术路线或者应用领域。比如预训练模型BERT,图神经网络。或者选择一个领域,智能对话系统,自然语言生成等,在某一个领域深入下去,把领域内的方方面面知识点都搞明白能够串起来。我们要使自己成为一个T字型的人才,有一个的知识的宽度,同时一定要在某方面有深度。 同时我们要养成读论文的习惯,比如在工作中突然来了一个新的需求,这时候就需要去读读论文,看看别人的思路,做一个baseline出来,然后再此基础上进行改进。1、什么是自然语言处理
自然语言处理 = Natural Language Processing = NLP
自然语言理解 = Natural Language Understanding = NLU = 理解文本中的意思
自然语言生成 = Natural Language Generation = NLG = 根据意思生成文本
例1) 一个人在看百度贴吧看帖子的时候, 首先是看帖子,这是一个理解文本内容(NLU)的过程, 然后回答帖子,这是一个生成文本(NLG)的过程。
例2) 人类在语言交流的时候
1) 听到对方的声音讯号, 根据从小学习的语文, 转换成一串文字。 (语音识别)
2) 对这段文字进行理解。 (NLU)
3) 回复对方。 (NLG)