题目链接
D. Imbalanced Array
求所有连续子区间的最大值之和减所有连续子区间最小值之和
Input
The first line contains one integer \(n (1 ≤ n ≤ 10^6)\) — size of the array \(a\).
The second line contains \(n\) integers \(a_1, a_2... a_n (1 ≤ a_i ≤ 10^6)\) — elements of the array.
Output
Print one integer — the imbalance value of \(a\).
解题思路
单调栈
可以计算每个值作为最小值和最大值时的贡献,以最小值为例:即找左右两边第一个比其大的数,可利用单调栈实现,但由于会有重复计算,即一段区间内出现多个相同的值,这时可选择寻找第一个左边大于或等于和右边大于的数
- 时间复杂度:\(O(n)\)
代码
// %%%Skyqwq
#include <bits/stdc++.h>
//#define int long long
#define help {cin.tie(NULL); cout.tie(NULL);}
#define pb push_back
#define fi first
#define se second
#define mkp make_pair
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
typedef pair<LL, LL> PLL;
template <typename T> bool chkMax(T &x, T y) { return (y > x) ? x = y, 1 : 0; }
template <typename T> bool chkMin(T &x, T y) { return (y < x) ? x = y, 1 : 0; }
template <typename T> void inline read(T &x) {
int f = 1; x = 0; char s = getchar();
while (s < '0' || s > '9') { if (s == '-') f = -1; s = getchar(); }
while (s <= '9' && s >= '0') x = x * 10 + (s ^ 48), s = getchar();
x *= f;
}
template <typename T>
inline void print(T x)
{
if(x<0)
{
putchar('-');
x=-x;
}
if(x>9)
print(x/10);
putchar(x%10+'0');
}
const int N=5e5+5;
stack<LL> stk;
LL sl[N],sr[N],bl[N],br[N],n,a[N];
map<pair<int,PLL>,bool> mp1,mp2;
int main()
{
read(n);
for(int i=1;i<=n;i++)read(a[i]);
for(int i=1;i<=n;i++)
{
while(stk.size()&&a[stk.top()]>a[i])stk.pop();
if(stk.size())sl[i]=stk.top()+1;
else
sl[i]=1;
stk.push(i);
}
while(stk.size())stk.pop();
for(int i=1;i<=n;i++)
{
while(stk.size()&&a[stk.top()]<a[i])stk.pop();
if(stk.size())bl[i]=stk.top()+1;
else
bl[i]=1;
stk.push(i);
}
while(stk.size())stk.pop();
for(int i=n;i;i--)
{
while(stk.size()&&a[stk.top()]>=a[i])stk.pop();
if(stk.size())sr[i]=stk.top()-1;
else
sr[i]=n;
stk.push(i);
}
while(stk.size())stk.pop();
for(int i=n;i;i--)
{
while(stk.size()&&a[stk.top()]<=a[i])stk.pop();
if(stk.size())br[i]=stk.top()-1;
else
br[i]=n;
stk.push(i);
}
LL res=0;
for(int i=1;i<=n;i++)
res+=a[i]*((i-bl[i]+1)*(br[i]-i+1)-(i-sl[i]+1)*(sr[i]-i+1));
print(res);
return 0;
}