杨辉三角形II(Pascal's Triangle II)

杨辉三角形II(Pascal's Triangle II)

问题

给出一个索引k,返回杨辉三角形的第k行。

例如,给出k = 3,返回[1, 3, 3, 1]

注意:

你可以优化你的算法使之只使用O(k)的额外空间吗?

初始思路

首先来复习复习杨辉三角形的性质(来自wiki):

  1. 杨辉三角以正整数构成,数字左右对称,每行由1开始逐渐变大,然后变小,回到1。
  2. 杨辉三角形II(Pascal's Triangle II)行的数字个数为杨辉三角形II(Pascal's Triangle II)个。
  3. 杨辉三角形II(Pascal's Triangle II)行的第杨辉三角形II(Pascal's Triangle II)个数字为组合数杨辉三角形II(Pascal's Triangle II)
  4. 杨辉三角形II(Pascal's Triangle II)行数字和为杨辉三角形II(Pascal's Triangle II)
  5. 除每行最左侧与最右侧的数字以外,每个数字等于它的左上方与右上方两个数字之和(也就是说,第杨辉三角形II(Pascal's Triangle II)行第杨辉三角形II(Pascal's Triangle II)个数字等于第杨辉三角形II(Pascal's Triangle II)行的第杨辉三角形II(Pascal's Triangle II)个数字与第杨辉三角形II(Pascal's Triangle II)个数字的和)。这是因为有组合恒等式:杨辉三角形II(Pascal's Triangle II)。可用此性质写出整个杨辉三角形。

看到第2条和5条是不是发现和 [LeetCode 120] - 三角形(Triangle) 中的最终算法有点像?没错,这里可以使用类似的方法得出杨辉三角形中第k行的数据,而且更简单:

  • 第1列和最后1列的数字永远为1
  • 其他列如性质5所述,为上一行纵坐标j-1和纵坐标j的点之和

最终得出的只是用O(k)额外空间的代码如下:

 getRow
1 class Solution {
2 public:
3 std::vector<int> getRow(int rowIndex)
4 {
5 std::vector<int> columnInfo(rowIndex + 1);
6
7 columnInfo[0] = 1;
8
9 if(rowIndex == 0)
10 {
11 return columnInfo;
12 }
13
14 columnInfo[1] = 1;
15
16 for(int i = 1; i < rowIndex + 1; ++i)
17 {
18 for(int j = i; j > 0; --j)
19 {
20 if(j == 0 || j == i)
21 {
22 columnInfo[j] = 1;
23 }
24 else
25 {
26 columnInfo[j] = columnInfo[j - 1] + columnInfo[j];
27 }
28 }
29 }
30
31 return columnInfo;
32 }
33 };

顺利通过Judge Small和Judge Large。

题外

根据杨辉三角形的性质3,我们也可以直接计算某行所有数的值。由于对称性,实际只需要计算前一半的列并将结果拷贝到后一半列即可。但是这种方法的问题是需要计算很大的阶乘,当行数达到一定大小时不做特殊处理就会溢出了。以下是一个示例,没做特殊处理,只是用int64_t保存中间结果。当输入为21时就会溢出了:

 阶乘-有缺陷
1 class SolutionV2 {
2 public:
3 std::vector<int> getRow(int rowIndex)
4 {
5 std::vector<int> columnInfo(rowIndex + 1);
6
7 nFactorial_ = 1;
8
9 for(int i = 1; i <= rowIndex; ++i)
10 {
11 nFactorial_ *= i;
12 }
13
14 columnInfo[0] = 1;
15 columnInfo[rowIndex] = 1;
16
17 for(int i = 1; i <= rowIndex / 2; ++i)
18 {
19 columnInfo[i] = CaculateCombination(rowIndex, i);
20 }
21
22 int left = 1;
23 int right = rowIndex - 1;
24
25 while(left < right)
26 {
27 columnInfo[right] = columnInfo[left];
28 ++left;
29 --right;
30 }
31
32
33 return columnInfo;
34 }
35
36 private:
37 int64_t CaculateCombination(int n, int k)
38 {
39 int64_t kFactorial = 1;
40 int64_t restFactorial = 1;
41
42 for(int i = 1; i <= k; ++i)
43 {
44 kFactorial *= i;
45 }
46
47 for(int i = 1; i <= n - k; ++i)
48 {
49 restFactorial *= i;
50 }
51
52 return nFactorial_ / (kFactorial * restFactorial);
53 }
54
55 int64_t nFactorial_;
56 };
 
 
分类: LeetCode
标签: c++leetcode算法
上一篇:[Android学习笔记]枚举与int的转换


下一篇:c# 枚举