css3---2D转换
css3中出现了许多新的特性,其中2D转换我觉的非常有意思,通过她,我们能够对元素进行移动、缩放、转动、拉长或者拉伸,所以希望在这里和大家分享一下。
这里,我将会介绍到以下转换方法:
- translate()
- rotate()
- scale()
- skew()
首先,我们先插入一个简单的html代码
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Css3的2D转换</title>
<style type="text/css"> *{
margin:0;
padding:0;
} #picture{
width:100%;
height:500px;
background:#ccc;
} img{
margin:100px 0 0 100px;
} </style>
</head>
<body> <div id="picture">
<img src="mary.gif" alt="This is a picture" >
</div> </body>
</html>
这段代码我们可以实现在一个div里放一张图片,通过这张图片以便于向大家介绍以下方法。
1.translate()方法:这个方法里可以有两个参数,中间用分号隔开,分别表示沿着X轴和Y轴移动的距离,这个距离是相对于该图片的移动距离,且向右为X轴的正方向,向下为Y轴的正方向。下面的代码表示将图片向右移动100px,向下也移动100。
img{
margin:100px 0 0 100px;
transform:translate(100px,100px);
}
2.rotate()方法:这个方法里有一个参数,表示要旋转的度数,正数表示顺时针旋转,那么负数就表示逆时针旋转了。在要旋转的度数后面添加deg (即degree,度数的意思)。以下代码表示将图片顺时针旋转50°。
img{
margin:100px 0 0 100px;
transform:rotate(50deg);
}
3.scale()方法:这个方法里有两个参数,没有单位。分别表示宽度和高度放大或缩小的倍数,如果大于1表示放大;如果小于一表示缩小。以下代码表示将图片的宽度和高度都放大两倍。
img{
margin:100px 0 0 100px;
transform:scale(2,2);
}
4.skew()方法:有两个参数,分别表示沿着X轴和Y轴倾斜转换,单位同样是deg,表示角度。这个方法不是很容易理解。首先给出下列代码:
img{
margin:100px 0 0 100px;
transform:skew(20deg,0deg);
}
表示将图片沿着x轴逆时针旋转20度。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAT0AAADDCAIAAAB/FlEXAAAgAElEQVR4nO1d29msKgylHx9Tiy2kDttIC9aSV+vhPHBXCIG5OP8+8rnd8zOIwGSxEghgeGc+2N+r1375cP3qiXlinpgvxphKrIzk67et3J80T5onzWfSGAmlezuva45PmifNk+ZbaWp8Kzzczf2JeWKemM/HmPp31Q7gN3qaJ82T5kljiq+v6a6Rrbyub33SPGmeNJ9JY86JWkmFHJ+YJ+aJ+W5MxrdVrF5j7u5pnjRPmidNg2+rD8iQ1sD+SfOkedK8I03NvpXhKuf+xDwxT8znYxrjyafIK55/uzd60jxp/u00bX+p1tXK6/rWJ82T5knzmTQKvt17OT4xT8wT890YhX17yuLunuZJ86R50ijGk6swvubYSvykedI8ad6d5jJ/W31eyLr7vifmiXli3h0jrivoYvVXe6MnzZPm305jKl8LQBXyqj71pHnSPGk+kGaKbwUMX5960jxpnjTvTjPIt3stmfCaJ82T5knzgTSz9m3rHU/ME/PEfD6mzbdCZKuTuD7YKsGT5knzpHkhzfg+NdVIuYeodgRPmifNk2Y2zYVv99rDrfgh9D4xT8wT86YYU4nVIFZ4xw/0Rk+aJ82/nabt59hC6d5+Qet915I9aZ40T5oX0phKolYH0EKy8NYn5ol5Yj4QM8u38UML5HIJnjRPmifNC2kU6wqu8aM9xLVMn0sT/rRPeEIIN8jhh9Nc+FYA5xBW7465W1Se8EPhz0lvN6Y2nizAuMXmv9MbhZi7ReUJPxQqkvwLsvpCGt38rQzpbsw3tf9w3S0qT/ih0JHku2T1hTRqvp1D7C0xj337hDK0hEQ7YvJ7MQ37VqikEPkzvdGD2yfkQRKkH5DViTS18WS5MkKOrZhPa//XxI99e9Sj/5/t0hGkn7dm1XyrefgXNId2we4WlTuCq/XB9mDeye5kd+J4P9gebC3bw4b7/yWMidZPSXgjpuef3OVbjbaseWouTfuru0XlTSGgiy8w4/Ije7gib2hX4BXtitkd7Iq8od2Q9wDgPJt/GsbDwvZj7HpNU1t/K6BXo39fYwSkTae5Fqn89m5R+Uw4Lh+stQfbnXO42hV4BbtC/MALZJHIG/JG1pHw/0B5PguJRtjeKKsfSKNYD/QKYuWizKXR9Fj/DN8WwanB8ZNXjHmjkmOBV+QFOMI1grb8kxyAPXprLfavkLAWG0oG/oE0PftWsGk1GrIGfkNphHeV192i8rmQ9Fs+2G6RYNHuZA8K8PZWLm9IK9ICOZIdet2ftAJvaL3ybP2z/xYJT/LBi7L6yTS98WQBsaN1fjFGLuflV7lbVD4SMpM0DD45gt0wDDtllvAe+q+dcgbmDMPpvgJvxDXi/Qeacl783iW9745RjCe3MNmtrZKKNWnGW/ZuUflICJhkezCvyM5Y9WPFxHsiW8+0m4vx6ckR7JLuOXSd2hzxby0HbfyWur4zDAhbS0Sriue0PL+cRvSXmqitTNqt5pjr8MQC3y0qnwtsD+aN/EDxhg6ZzsrljexBYZgKeQXeyT+1E62eWmkxvAAvhhYgpyo7JK9AK/Aep4vck3++MbXCpkfstDy/KY3RdiSv2ANVpE1kqFSe/1G+jWNRvJE3aDfkQKd28/M9frLHQ9RTqGuZZOguHrrkoWuyePBo/4faUBJRjfiNovfzMT3/ZE0dqsjs1rP1bZfA/2d8y6e/Dg5Dx8A7JsW4GE/2iHX8SRvxwXwQbejYNYA26cwRxrwCLYBO/f77TOtCU2xklqqyxR3sek3TWw/UrcBEL6VXrTXqyj9v3+ajuwc7m9ZN5HhoHcwb0gq8E+/kLFW7Ex/EawDqTrwTOtyemTZoy9kHT7xbYN0/PsI8SWtdSZbh8Mk06vlbTQ2VvdQQqoey+sf5lu1GvKINI8B2Z7bMO/FKvIK11h5MbkrWPeDJE3AF2olWwECzlNu3JmDYxEj/Fe/4DyjMTUjIAqaU5DtievtLCXUQUDoBue71v+VbH5h35swFilYMBIvklOSCEZkPP4aMC8BiaEVcAE0gWBPZFcqYdPcgd73AX25STUffkVUlHIZe8UKa3n6OIugldA1ZBdenNOURC3a3qLw1HNZa5p2it5N12u+G/lqAN+SD2anN4aKdcAEIlAsLoDG4ABmDC+Di7wVcDeBiyGRq8wpUG6a6ukz/bNCLjUr+hcc/Y81e06j3cxReo8GhpsmGDAyhhv8a3zoLk+yK0dvJIQpXoA3Rab8b8kG8MwXE0s60IayAK+KKsAAagMU46BYANoZiTMm3uBgMBnMqzF+zdfuSqUfvnGy/O2ZkP8duyi66NCmv+Y8q5wfzv+YvxbxR9Ct2bhJoABegFWkjWAE3pJ1oJ9wJN3dH3AhXxA1hQTAGDGC4owF0GDaGFuOh6+AaKDdQMeBiaMPUG/4dpnWhKS0aBXMU4TJk3pRGvZ+jBmZddHVj9PZGD+R3i8pbw8FhLR5YDySgxeBiYAGHTPIQ9Xfa0MU7NgZjEtkaA8Z/CNwbqDVg1anQlDNz7sLh//szSxH6bKlEb1c+v2XxKuZvuxpy633KTEYRq/kN/jXcZsPIgQDRADrmXAwYrzPTirQCrYBrmLxdwj0owA6KDsMOwIXynGvOcXQqQLewcn8SotUwJs/v5dvPxAyex6c0R6dtgAm+bbz0blF5W+DDcvR/8kNHF4w5/8SwiC+tEAqeGPkCILcGiLyeDF55XtI9Eu+Jfp0V/RcHllXyXBWnaX5WQmY2TW1caggwrerpjeTuW4QWbzfu3aLyzuABGadtjOdDP4sb9rXwa+JXOK+bT4vmMV8AFABpgiId9OegG1dGsJx3h7V/a2RKJWmi+qYV3c9Ys9c07XV8XbR0AaYBp/4tXb4tU94tKu8KaemPI1s3jJTDNTg2FisE/EROnM4xmbtFuYLPjzwF3EJiXU+5TrUmHeX+5iKEJq0JdNeFsZKxPxMj8q2+ZO9CbLf+Mr1nf94tKm8LvFMCmDHe93jFwl8iH2eKVqupjUKFxJnXlAe8c88I6f1QVtKWTRisWpHDaqFKK/+k0auSNL2IdlXZzzOwOadQahFCF9W1UfUJNHp/47pbVF4LWfmdy3FcxEPJBD0D9fQBLh9qg8kGk1sy+CErP9YV9Oc01Oy15ax5/0Y7S8IzYaaO4r+b1Xia9niyRmHQ6K7KandtBk3i7F13i8q7AtuNoi9xgdWlDlFYQsyShovjn+FbSMmSWRt9LSD7KlFu9K/ijdKqehfigv6fDHVRnDZTNTwsv+vlNO3xZD1Wq1kLhdAXXW5Ksah3i8pLIZX+sM6NEcupVzAQUep0WliiQ0VkSAMLnJgTQmKTIRxyEg52bMjcP16MVLk1DH8nVETxFYFXPigAW8P/YpqRc6u7HZJSG+lqAq/bxv+MfesW8Vx1YI8rSNS6BOV5Ddy4Qro7KC6eZs0CxgUHYJM4NmbYYl3nX/m3ZoNUwJiwb7u6pJ72BmN66wq6LDeN3tEaKhOEyLtF5R3hYFwx04Ed6iK75ne/ciC4EzsXyHBfgdYMtAb8P+P/AA/vkH+WbfaWRLmwwN9aVT9s3w5poJoHR9/SS3PZp+aVbmCOVIdoXMnzfwi3aRsnezr+gw/GXJWNpqkx4AhzybTlDKLZZYL7lIdlRGxEo7d+s2cDgE9atBttDqPKG16Hjn+20VUyOcocSsoZop8ugYfPvfHkwW6g/8i7Wu2aYfmWu0XlEqQJknppeadku3qIwglOYIwJCKTNbYbs1vcBbeD3wdgC34as3BIfWl0y9H9u2bWeWB0g86OClon7k5NAtrv+doj39OidEGZ1jFEhVtMNKN+tQfJ0ttl1t6jkodzW9PqFtbYoc0qIEa4ZAWIEVdB73Wda0Z0P5LaGs5s7jgB5R1ojrwaUhuW7HJJ5nG/o7v4t2Yh0QC/gAriitb8L1FNQAWxIW2x9exXsF2HVSNNeD6THjF5376rNcyZB7cPdomKttfa4MmmuCbM9rF/pHjjhkgPj6s1RCAt6HKjcZhe0uWV64PDMO9kd7Y7uA+/kkOwXza9IO7q9pmh3+7YC7w6rEbRQUG7O8Euc1zVxK5xz7X4yDNu3QsqP8q2a+XV8e41R2pma9hptKV3M3aISA1/u128936Z93vIUB9OG+SiRPyPzILsTxWW3K8JieEe7E+9ow+W41G95sSGuhDuFRiPaAkXvyBvSnlHuipHS82lhcGsYjrD/a6xFpZP6lVAXp1HEKr9V4vy1GJ19q+lLujgcqryQUsg2i7lbVLLgcBjvZ32Y2e0FdRDt1Cp50lpXsAfZA+1BcR9WB12v93pIR8r1JqtfTB9W1fPh9pQLqvIeNWRwAKYV0qhYzucH2YPY33+pndthQK66sqpRs7vZDrLrNc3IePI1uyG9d7T+VUirGfhuUXHbLwVkBnYK4CROB9s6gmXe2Sm9vBeH9MQdWHEFp6ny4fmWD3IdQdzggv0R1RT4lhJuV4Rwua0w+GB3HIkn2w2ieez05Nx3Cozh3XcWgZMp7PZ4f2vLoS63r/CtPp8hQlJbvCPzt3qkvV7/V9SJX+LbCEvre31HjEQ7+S0XfcmJdgcnpA3rWYWNVCPp2YOstbjHnS4o8e2R+Ja3sFXNCrSxMQAr4orxvRG67AeikTeIG2U4JZlWtG7n9MyvI9/z9ZdDHzZ6q00DP+HPObP0EjPOt0OF0DSHEK/ufn6Qb2PghE/ytqgjtJ2s38DNG6gYNpdJ5U8HVXt9OCir6NRUPhg3MiviTrCAp9wjUa4bT3b7wsUBJlgAN+Kd2O+3XAwp84aUu2E43G7IO8ad4rwP1mrCKX6hrj85wqyVya7gaaA+Csgp8VbP375e22qCUftWyck/Mp5srSfVMIRLgVFxI9o944WYDLc72doJI25k2O5orVeV6WDc0poCP87sFWlkZ+huTj0GY8AsDrcIG9LO7vARLqCLbr43J1swhjZPs3Ry7ciW4/5Oo5+CikXnDMMh9ArSO2jxKtYDad7UtWM17N16akiFCB/uFpUsuH2Md6SNIjg9gAOeT/F49UY6mA/iDdGdIWCDcbsz7uTQaBaAJe517KEbh6ZgwYTbFWFFch3KhnEUOkIX13zG2NnV0aEqzvT6GP55E7eJjas4KYW2h6thHA3G6NYDyd1AGzwDSFbybbeZwle3yUg2HJVFcg5aTKwboJvz7YrkD9pL6+NoDxu+LX58yI/rWsaVvMm6Ie/sT+izzvolG/NfASK8gzZOwb5NSnU0bk9+jl5DNrSCt4Gj58ZP9ZK1MCBOXalWyq2sS+vR24DeyHogAZ96Nbv7IjlPtbryVbkouNENQQU/Clcqy9ay15MzO5a2NAFLe6EtUxrvYWstrXFACHgDB0s+yFpLO1JiPLYRt/7ux6jcHuhxSNlvjB7HkyPlev8qhCV6UIYVQmGhQvSs8t6U+1/gW704KVXoaVEXEKvWCF4YT34dil2efyHmq2KREayDaHbeByUAW+bCxEXaEPccuol4ac9VZXZWKK7eXyrnW3u6HM0ecXSK3FH0bhzbzRiRb/8wmLyh3cmh0cZZX3fQQXJOTs7P+Z02/HHQ2rnz+ObUYCXmBYjqSvjaePIEtofaa9QgySLvkQ//9oCTHWkj51pIOzklNswDhd3Jg6rMIT2G6dZijzU/EwtgDHnXC6cJF1i1lthms0QO29HhcfdjyL5D2Zm9ewbRjph5VjiPK2fBxgX0frTZjV35SSCP2x8H7oA4KYX2ikx9tt0eQQGB18aTlZjXo3dIx/gZvo3ikc3rFKRKW+EY7PFcfEt0ZGNUqxuaSvMrfLD1w0uGNvQKsFOGj3CvwdV6Hdi5MaL3THavO/zIc/CjNLCY4CYZHDain9YCUaOOk0a0BuP2J6d/YpgRJyHBBEkq+wI1BBT+ya8o93LPIWO12z+J5blRRCgbYcrneKr6MOajU46Kw+PlnqZsD/JnYa5Oiw7jxoVijPZA3tGNJNsCZs4LEt3QtD3YO3Ks+UL56OGc/KKCf6Wfwk3Q9cr8qZDfbnBNGBOnIXkbIcmOTirk0OTbLtwnlPs53V3fP4lt92XBsNGyPZh2h1iIQ8e4Ia2IQVPNvS8inh37xTkhKs6zdQYzYbA542yQh2sEqldxs8VAe/I6DpSblvVlq+fBJP8KKkkVcD2TrYO0LZ2lflZb/pR9O5Gt/nWinDfmbwWTde6tmt5O31IKXeCrYhGWxfDObiCqQOaaxpC9oXtQOZLsVxQUVLxe5lcOhhV4J7dJhZ8NSnNCmC3iK1kxTLc6EOZbZLhl9PmGNZTQDnGlAa0e9hl1x2O+zo3x+fYeDmPipFcJ5TRKk3MCEf35WzmvrkkgZ6LpEbrxjbJ9XBbCPC0fnDyNo/nqhmqjrZv7MGYQjfTrnJwi2t3FhenI1rIb0HLbQblJVz7SatuAWIprA/yQ75ruYcOaeBWbZoRlvWk9vTNiHXQprq1fgbY/tb/UkDj1MNOX3i5GRh+8ZDK7f7KmNF3SFvIfjf+ifcvl/w6EfkgpW3zj5nJceYq5n6ASs5+PCdB1sN8o5pBP4XJ4I+3kd1dcw0LcbOnP2V0x4dbvcYFxg7jgfmwWY0xaJOhgH3e9iDlEZyn8a6C1sn0ry/lbvhoSbx3QXtvvoqtmvF7/WfR+UApKLwuH28So2QdvuFp2bsCZKcvZgr70OdOTySE8N3HtYcO7/AaOtJ9tzkwxzngyAC9N6pz4dvGr4SkRdcjEP2vI75VRjHJ/sJHfGt5jzWpA0c1Hj16xtOpzvdoIkd6kIe1Rxbj76uOzfFsVDPbzN+DACR4nYW7WrcLLVOJQVLoUPqHXLejj4AuV49/tROEGlk+r3nOs+rsbzVqzbVaXuE2cXxAfR5vPbhUruCFl2s6I5Z8cOq4GSd40AjkqvXqrWHhQLK2Ob/VG72j/JJS4WoDWh8uD98hH+JAYOLpVWOY0cRoW5fo7FRjORqf4oLQhxu6J3c0Axf3Zkhpc3nEtrjhiHLdfjW6MEbe0VRRsx9K0ZaNQx+XDb4e+TOpFVAmE1ldv49sugwsAa6XXK/3dF82240fFwP8TpTZfZ8t7hOUVtBwnkML4ViDkPWPj4MDs/fgPphXA7fbmVupkinHYDBlz0EayTaPHYVNIWqM1iyVdg9t4PWx0nqr/t4KGwSRJFshszvQVvtXhvOEvNUSkLf1ZKIHwoNys6v7sblGxTnnOpnkSCP18bIZV7wvhcFuCmXOjdwW/WcxBbhV7ttlixq5LGnxCkx8vku11vkDaSDnB9aRg+91YsbEFx18JfdGVJVmAQBcRmq+UYp+Vtu2f3MplWncf/Upvh9TyvFtUfOAMt2m9wQmZB8U9MU6LBLwnhptJCpvUcPBhpA1hDVuZLxkg46EEcZvl6xBU2PS8uK/5+LPfhob+wk40cuhKS0dEZYLpaqB6q7D7Z7hq64Far3yj7q7v55Ta+6Ut7hYVH/jg2kAUlauFvAFs0yasfmtl3jmMTscVtt5FkaNjk5txTSNPHqvRrQLTqvdMGY6m7IrZ5hV+EMtpyH/r8C4h9FHXkrSuLikgvIsCvZxfMtGtv53oS7qlGe32BlvkblHxIQMnczH+FO+Z9XtZlBeX7MYBap/vwbl3BO/ZkHKcEMpR7WdlM1LdsNSQPVb9VK33+sg3oPmVJp0IHXnTc4Mgh3qdVNYWdWJvKlko36cElRK9Lc1B3wuWH+4WFRdceTJSjQ5SR1iXs3MciEp8e4SdWeP0kpsQPpLKygfHuVbO3Rtz7/89OSpGmmU/MQuXIahwMtheObPL/mXg1uVniOK6cqhBtZ57eq+7jEuNYnXI9FViXlOTXszdopJCBCrvTMcJtAnGHNfW+yqk2SDwU8F4rtXBFHczzhHruPS8gVvQk4t7cqVyMey3pwqFj///kSmfahgTS1mzndCQh9Jr+VbmriEMtxJXFQNlY82i92ZJybeqODjn2OI6wkL2zHcqej46dPmTuPwRJPYEIT4sp5MK0sEiaTlB5gUVzdpEtmvSjcG4NUanMNCS/KvwblqzepNVIECZupRiL7/0kmzW70Jp32quLmL1rfMzfFuuSU0OzOEDZp/LuaKdw4YyxWLAsLyOrDvQID+Yx63XDxRaasjJiYqLceO0zCAcsQluCBpX5PPJY9Vq/aUw0PXLam0Xafqvhkj+UjZTL+KoEdsFkoZyNbD/K3xrbZLygzPQYtynxp1akAO4WD+0AvozQdwAL+ECZAwZQyvw6tYAsT3YpiO2OHkpn5bLX+Z4vG9GOWkUXDIAt3wD5z+wo4UcVBI+wbeteL1J3M22Uapxvh01YvXtJb+629BlIe8WlSLwwXGjqbTxhV9/W98HA/zxeYCBRRNu3bUALYaWZMHyirwCGr9cNg4vp6na4AKV3DOync1NXNNnjHEn3ObE+5dDS0i04NGLqwYR1Xz04r3nuJ3oG2RovQu93Uo2cr5bVPLg1t/5jeAo7OEY92H18eF8oEi2cc7Wk3CJWyw+QBXPHI6oxhUpcXhYVGCSx7IJR92aEG8MYDxD5AjV+JthRp1UUt+ocTeK8AaqL/5Soxpy9xJZUcrqNWK/W1TOgctVuOlDvm1yNuXjQeuUW4fzBdCY/KIWdNMFlK/aK3YyB2N8TOFcZaLHlVsqJO389nOt3AgdmRlVoYc0ZzlG4DwRwzW+VSqupxhBs9c3TfdxdZveLSrn4JbypfMK4s413vE47WgDK0DgW8xpucRthGv8fAIzGUOLYWMoHBcSzx4wJj+NwK03gBzQ4WtwX3HacyPff8OeHaraNvC9PelLfDv0lFLCJxBeXrp5oDm+nevMNIhV5HyjlAghbrNKJwAnZ8aoIQOsiZkp7qvojg4w4D5QiglgXhL9OtCyMbQEEJqSsxcPUjCYODZei0G/FYY7lKBCsPGIUPfXb7Z7XUg00q5Ud1us09UZhTQz9u0oeru6u5K6u1VVV+9uUWmFkwuU9150MRARu0Cych1oA9nC5d66KKHXqdCOVNEYhMTQKQ9Hrf7ZJWngGDZ85HLZLcdTVAbb/PsL7vvIHJL2CYFXSniXk8Of43yr6R4EpVdvr8r5yA3xe3pyHpzCDJkRm5NtdEX2erIzd5eIMM+0DdBCRpVJVWaPQ0Bv06JZqmAHNIAG2Bjyd0MmDjtD3rB8RO8uf5Av/+pBQR3sTci2IL1zVt6gaVlbVzDaA+lrVUWaHthCy14ev1tUaiHwDB8cKRca95yQYckIdokmKOQacvpQWL+GywsXQJ8BGYPgAezO6UOnS+OSPeJVcYf25JWRWjs4ZsbdZE9V5rAz1o0/SrEDwZzE6vHWfXwCvZcEjXV83dd37dtuxbr1aZRY+aK7REQR/LaM2bGaJ6DmTJtmWSOXlqoy5EzrIxeDYXiZjWEDOXTJ27EZx4YVQri5tfiABmgBMhApOg5Huw1i+eCTr8hlD0obt6HksOVl3gJfbXGN3E5DsasAd01i5YuyS+TbbnYTJe6axHIX1X0qlOTLkqEPka8owydEoJ4M3XT8bA7XxMB4oeLCZg3jyTYDMPnRJj8uhe50v3BkLu9ujws3P4Qm6tUB5O5o7HzZQxwJx80t63cr/nPvQrpA97ttLlCCLEh6aA2ZxxpgixAT+VbDma9QtFDVWb0/XrfIx1Dgg3EnLBAblORwzLTfrSKft0l6sp+qyYHqDuDKcOaBygZ4ieiNei8Z486nD2f57WgPf8xXxK3Tn/PZIzAQ4eqsceePSVtcsRjgms49wrCz7D1NrbewOijVa5oyrLrqpIg+Bd++YpROmMStrzRadPbnLfIxGng/Hybkj+1L1STaKK4KgjRElKvEca41wTuau5zNBkWTFTMWpZ2sP/QAeAfaDG1u+7h8shdN2XvAArmJHl01E2h3wi2dgeR36rirnfU4VEJUiT0NRmR0NL4S96nRv0mu81ArKBHbu+4SkZGQj82eY1oP8E64otvGsSDe5czGmCZvIUMvlPYtoPNb3oFWg6uh1dAGbmv12kxTWoaQj6udlkmEA1PCsuH95l9kUnOsYlJOJqBJznCIb3dhnxq5EC/y7dAjMnobBbtRStqhUiqeHaThnZwH1dXJKRq60XHKodd5L58GpcKujn4bKo/bK99mHhreyyrzGHFO17zHBRL5oSpp58p6E3w+DGBGiU8NegXQdqW690ZxnxoNOPUmcVdn1ijVupzpN/Xkt/kbeOckWiFCN5q1OUXSUjhO0WLAzf0UxmrwuAi71biZpzg5lA1NFaqyWYDisoctW9W0pdXFfHB+dOi76j/cXhqMyWIv00n3EaXRq37jyLleQrycRlMmvdqgaZof5ds3BYd/NyKd5oFOSi0Ua4aWMJ0T45YC5sELMh2reVqB4Jl2KaCLYYNIzDYDSGcgWXbmLu6YBpPvWMerFaruV7L1qyfhLnB6b7yco6l5/ZzxOaoY6yFdq+cN0vHpcJF4h1u6rhMKLsrBAcOBFs/OyYV+Xdiu7atIDEu2kDhstpzOQEo6s184cTrK8Guh0+MLgNQYxspHRpVZ8Y2DfDuEXjkHzSPdXqCd7MuS8fmQb0xjrbX2sBD41oMzuUwBGqdCA3ovqOhDlYBX136v9vJSB60xACuEnQCKg3/dJgHFXNG948kTnCELrVLX7WJSr0WWX4l822VCuehzj3SbWAfmu0Tkc6E4DO+w1gbcLgG6jngXCATrXRrhzLFYKMlLA7cBruAZODy+ZMhPfIvldln5n3F0yt40LCXue35FixJyLyJWGd/4qs231VrJmn21bxh6RHhpq90b+d8iH58MlxodFlaCDKLBRgVj/Aoe2hkczBJnphmgeIczUOsa8pWf3cZXOXTTlnf+h0hbZ934ozT9kzU0o5FePYI04t3V5M9+F1OWpKrmo9nq267xirtE5LPhCOtdrbXW8s5hSCkqwwXwYEVYsKTQqlmLUKSpXQuWiT33puGowrjlfI/ocCZoWKP7/XV8Gpmpwkag5QlgD4m3+JViXON+V7cAABZTSURBVEomxmrNu+m7KWUeVjTQt0XjS4FPf0Bcjndel3dlzhKxSd09fcgIdjkluI5LQVSMi23cd++Q7Aeldkz73dzSaq9Ygnqp02O1K949TbPBt/o+QGiCrgKg7Avk3BqluktEvhIyR6udG7i62LSta6mmPBm92Vcl4MttZaOqHNwb833bb8StBrGyiMqg0LCoxjBUw762f7LS1OxWvgv+7rP6N15i7hKRLwe29gzapQXUtAbI+DkhqCWAMhMovzpDOm5SGY7n5rhUKLlM+dMG81J/t5X0lqeAJSUPDUFg1Crs2LcT79Pgs8W0o3x7jbnk82XJ+GCo1KXYYDGpylduzP+sK8al+9SCTZQ29Oqwgg/DUSnx2BR/8MK0I+cbQwdXgnzqkTYKEw3ftotaO7d6VOcW7FIlSwul7JoQ/2++tYdNCMwAHIaRIzKrinTVar2OV52YGSCNUYVVh963kU9TQZTW7t26rqCLq1EYt0ChhF8Xvb3CzK6/1XckradGO7+RMtC/gtsKWV3OEIAFs31pPMZwpWwkuWrZRhI+WbkXAC8S5inuDpcGosptoq/ujbeMJ2sAphG2rpzLhKx8StDDjxy3E1krISqbEJom05Th0iN8WzS+G/LqXTEJC+JKRWSAZeZjXMCvMHcrnhiOZit6clGsg9lvnRVOSLl1OCqGmVGSUYHUAK/7rRomppOFRjduJe62hT6lpgxlzN2i8qbgDs5sBz5OuBWHjkvIVfyofPzVpoWSaVPkpanjaWbzSxTfHgYQ21UAu2AbMgOrT7W4/Rt8KxRCTjBtaZQxd4vKlwLtXCCqmNQhs8Stkiu+FsHFojr4BAWAKx/8n22l94d+Aur2+6NSJ4BN86zGvhVfWlt/O4qWruUwVCWhcUfKcLeofDSk2pW4Pa34KVTlfBJocHQKSlMZzJIg/ScautvL94VZEN2hNBOI7di3yrLKXYISZkM4P71ap5bcLSqfDBnFwdlNKmD1FL9cAJz/uZwArLnQDSbHknBWMKH179nvQtg/uSu3SpEb0j1fxkvNz3Ei09ZrRpD2asXK994hHt8IXK4LgjXCjwL8KMNndRC4BuyUPm3jeFaP8xP9FjAGabttS+ShUJcZWTg1oiuk6Vp/r+HlwrcCqco0OAqzbkGFMnRb/9/mW2tt4DdBMb4MR7VcF7P4fBFC7wIDXBz287tt3keCbJTp+XYU53N4GeZbjWk6pMrrG0hDxVnd7haVd4Xr/K2P4cOGZXqnU2/zY7vy/dzOK+DL5XtXxEbjtpoAYcHKPl4/2fJjUvQKDvVQ19BSO3+jhZlcuEFQdQr3InqPfwm3ldPrHMvhWuzWaJbwZ7lOACqArICzSqd9yl0wnhgUy/aDYVihU4puFwtz6K1eFb6Vk+rroFZitW+c6Av/cfvWHzYb9p3JdzWPTEvBfBUBeVlnC6fIU4K0qh7LrxAM0M583LPnmyaosFElkhEsqSRZA28hZbhqfhfdVyoRPtQu3V5Kr8wfzP8Q3+aBreWkG3vQwsK5klwatHWISnAduIoRrxu3We0GuYufFF0NhoeEVoO+Mb5VGrqymi4XV1m9VouXMT+6f/JccOeAhTVAsGJGsFRDbBwfjgDLt2g0AaWm/m3aUKpIc1WbL0sOgPY/dd68BplD+rMgukNGqKJDUdi3QnZDJdY8NdRpifnfLSrvDU49trBmQF0uiF0uTNvWjS8xGXqX9GfYAN2YSw7XAS1c8awq/4bmrDVllaI7zbcydkbM0vb6W1mX0Hcbo0/p04v53y0q7w/st7ZIBm0+bgw5zZ73lGpdFV4Nn1v3lqrs77gV2vKP/AwSYudEVwnjaho5cx19Kva7mKuMULeRfmW6Xe4WlbcFv5naYbMpHy6Y9kyz0gDyRd2t8urlHr6taMunMarluo/U/b8FzclzzxzTYljA55DeniUet2/1GvnrLP0CP98tKu8K3qzFjYNnRWDa5WrWVkDbGD02uTJchSssAoylWaLk/Pgzv4IAAEnSlDGjPCRLryZl5xxNfdEnmuAVS0Au8L/Ct+FkegfafAgq/Ql10KJmiBhqvBoAWUC6krJ+VVTlXwhn/+SWHL6OXr1uqOlHruKd7FsNfuY08iEFQ4NYJasfzMfPiU4rnNwqrm6DuOZOUQzVEakI3WDZNoZ/C6X3QrzmglhTfFiqoDWm9KmiH8StHn4a0dWrxDryVMjzOd7UUys1eAG9AnXrjdhuYapl+zN8Wy1k2vONPWivTMtX4/biFxVdjs8wgzNEKzEJoospvzqBv3JxNgn3Iz/DS3acJmZOZxa4useXIt8qtXN9pzKFwGakmOfdojIXOP1X2LQnxFI5mKxUjHs27Rmipg3ywOE19J4dMy996J3nFbSE/BUNuSvGr2TbwIKCbzXgmUCaSt1VdwGXLubbojERzuJbnLVX2rTRAzl+aA5HwXWStkGYsAC4A2x3pp1gxQrxJm0ZSoeNNt9Wa9Sq6VdCXeqGZFiOkcX4LegtLx3fyuDRI7BbKw34e4j9M7g9hbjoPDEtXzyQizlbh1hpAUBmuwY8m9NKgDzQwbiiOxPshHO48nPB1emlvha2/P/W8DpO3s+3+k6hhoIG3wolaKWU4fQWzURfjL+pJ7O1fHDYijG4HyfolsNR+c6pHSXZq7uwoqZl+GBYMYH2ql2XTlSQvgVYsh0ej99Abe4vpSTPLkko0TuXiYzHg3lv8W1LGe4m0+ghc4UWIi/F+Cv7J3O8hYDrdcqH3QAyJA25NpJcjBiXZq37Vn2yFh8Wzj7MUELUFK+r2bcKbfl7QYOEAbCNUuU0Ytv9yCDfKq3QIStiruY92r9bVMaCPx1z54xFI+ueHKRac7ZnszYaurAAbtEXQiyFtTbtNVf2BcZU7NuT97IBk8/fXt91k7uyVpgnzNeJGKWoi7CaPf+21RP01NcOyAVMDtm3f0RPDv1LXDaQbdq2nPY3rg5EYX7kR1VbhhX86ig1ZnCt9AWScXu5aKPwOl+1WON79oWbk8w3IlbuKYQiNUBeWw+kf/dcWwypEN1SNeLvEI/BEKX5YHswrp7fIFDliTYFcLaufL/FbuCAsdrrZPu2Mktc/gTlz/F11qWr2EwARoDAEHl24a24xHOrldnpdY8u345m0s7826IxFw5rLfPBtCEuAAvgCrgCLIALwGLAzda4gSXvhGhaAC5mVlfAjSTwNALvHLLCMufzKBS0KRc8z9OP/BZNYdYDZo5vhbfsva+uH7J7bf/kbrEmepQWCCdaQdNGP68nuxEpj1h/mg5QdvfXArgaiBiuTMlcMWzcxjG1NxaaeaVUx0lJPmngJeuas+ejI14HWlxc4f0pQXxwLMKHmlQIFf/kQZwMo1d4dhQ4tUiRb4UaypBuQXTOvpUzqcff7SJ7BEOu8sFay/Zg2pBWpBVoA9qQNqANaEXagFZ/lQCGCOATgNJfAcBFz6UcRraWNurr4ZXB6qgIGGN8aYvCu/5ow1ASPg2kc8Wn6p3wHpBnjV02qhtrgNpVyMvEar7VaKdKfA5ZDt3ma7z6jb/6G4OXVwfazSOWN+QcuhvSCrghFQxsYAFcIvd6nMQPBYoWmDlTyy/xDUy7nHyeT/pwOTq1GDC+YIFmgRZ3Nwm9EbrfNXG14FHC6ZVnu8qmjsZq5wO9wrfV+FGNt9sXKOD9VbkYCod1h8TSCrwh78gbBvQirwHAK9CGNbUZEoCN416AErqwwMTuiny4hUenw+bPI0+Zlh6tbgPGeU16xT5BN5SZMuhy0pm/FFT4Uap1b0H7C4h1V3vdvAa9+h6l1S4CRc9x70/zrZukpRyxvEGALvCGtCOX2jJuJ+gaKHVmuBAvrNAtSqVwyd2idYWQXupotjBoIQftaqjsdJzCLHhBfuK3e4MeWxVaQdoFBGkKIwh/4ls5U5ktNWlGu59eoTXN9PbffkxQWvE7B2sWeb9cgXhdGlyBwpAVrhmPLVEjdWqzI95kZw5N/+QBN3JGchq+Tp8dkyd92MEVnBq8GEyfC8o9gdZbv551v7Q2qCkq39SQh7DaK0N7X7gqfqqM2vog17xbmS7URTv5G+IwEjiNRUHSijPEsmPaoCG3xqVyeMACsIa5IofkDS/TP2qF+eA4sn1FHYR7smCXUm8P6K08ng2M+6zW64HXHwwdgRTY4o3o1bxXjd7avnCtOmjgpFdo25Abbs1L5G/6JzsNmXanEkMG15xsA2i3wj4MOCkoN4En0C9tdCJ7fUOwZcjGkGgDXPGs5UZeXQqmLdMkoKan4ux01JbdPulf+aVUUqoEmyCZ06pv9xWXHAb5VonVob5gyDaolqT27RekQRuyiR9v3cVh5D0Rr7dvA2LPZOUJDRKtee7ykAiQm9SQrbW8EWT9QjkkljG8A2H4M8IyUm5Mk6v0oZxhwHn56vkGsqh0BFiWVf2zygJ01c+6fTvXHwgFFYqisV3larRz/ppM1MN1QnIn9LOyHqJOMQ6gxQy0Bcsl3XjJRpIjeDLT18XzwXbcTcpaSzvGV1x6jcSu6e2LyeelMItPY2Yx0qSUsBrwJu5A8V4JA/BTyqoyZghT3SKd+VbW5qdVfE1uyvpU1QYx5y9IgybEcjjTMXlZrJArxpw5XdRsQhMZNae7cmzZ/znNY7xTyCflFoe+EiDdMHIEZw7IOGplspQmjXvHr9AvUfrSz1TxTxYEckjSutacHlNK+i34dgJL0yCcqJLyzyyT7whEL6RihKkRLEaetmK2thiLKmj27HSBDgkrnEjYwXiyrAdnPHlhTlOCNgNhkaAJWij+1C4tfE9oSqYSPHpRH0KB/BaxdzDn2G6HpO9yWg0xqpNPoPduvo3HcEWv4DTeE0Z9vM581Y1zs/Byv6C3iHGXL8JoOKynbnNCpoeiCX8aUyDZzT9F70vjIhdzmkAyGbxxiePJPFXWscAHFaIiQ3RI0gR27VKxpgtoFOkrfNtthVbHMffnzvf7J5eBdnJqbfRbPLnvXkBbeERV7ieLsfw8XU4+KMfn+Z5miRN6zYmBY0qTwzvnW4DF0BeVZKvkWz209LCfyLYKB4lvJRjMone6gxlSWn7YvnWBNoxeROdRn4tiXI7rZHiI+DSnNKV2Oqsn21wvCKNcpfZroi1dKsPBbauiOUdvDR/jqv/lg06bAilrmkNy2yLeV9Tj9os+P56sJExl7yWoJWWyb4pFN9BOGIzGs2dC7vYU9d7ATtFfP6igBhZjzmZkSBB8mKbLyQcHD62kt+fzrmytPZh2og1zT4w4PIZZRcJgsjl7ZXzX6cIK64G6iBLih0T39Y6gTKybv5X7g1aM8NQrZoOuUb4pFpVQjrXghvmoLOZrA/I5lYpeWhiNGYldx2/9/bV5UXZ7KdOGbkFSRJqbc7ru+Uw70YoQMAlXbSJO5HrDHr9/3pcKdS0B1pCT5llBqgWKbqiWPb6dQ6wGY6389Q0qJP4Jvi3Wl0Yl1tt4NT3zisNsjCfYlv5eH93F7XJy9GSxs7tbvnOeFi4eYecN5pan73S+3OOpQb69bY1KwHoa3DBKh3DRTVZ+JfKtBl1CjFArZTXkFhF5/uOy0JUVW0gkbngZv6mou5FLTRO96dnMniydB18r9eWz0JhT7Xzj/lJKqGiw3QWLbFQr39IATo1v9WCb6GA0DdHFaq8kP+mfzJk+fBryiYg9+TZAgep4z/g5eikFu/G3BtK/H847aVhrrU7ANGysBKrmKc1bWujblXwrp9Er9BOAH8Jw9rqbxKYUmDwcFleMM654HRMuHRWKYdhiVDmfv83GjVZA9c7m/7cwABUlrpQ6ZgsFerg2suqtB5K5V69Xa2CpaVAd3/6k+HK+fwVlVzaFm/v9+ns+N3tiV4/VnaJfwd11zDeXvbsAWVAJmJJvJ0h1DqJizur1QEKkphcZZdG59vod+7YiPUwbeX/GbEOpuJyggHG2ZA/C54vHP9IvKsZVq1hjKs++r/pbZ3tT8wTfClKnkL3m/RX0lvfZ+Vs9YruZvIjYRhfwdvl4OTBbzkZZMdzTaj6KV3BXRr/LFGL4Cnfinf3Opr9YzXPIx+e+efJtcUiCRsCUFple65wQ8nfy7YtUKddWMAaEtpPx/AN8295O8TTLwmF1rnXi5WZc2N+tLWZQ4k6IUuaV78bQ8gf6ghgaZfXTV1kvqQJDE05dUa8+orF49dguc7vYt3pYCtXT17b1rdwF9mN+TXt8wrdDAu1GdSGpytgr9u2EoMpv1/Jt9R1dTMpV7fZDXTzL722g/W6xecJdIWytvhPvZI8Mt3phk2Em40qP3iG2Kx8x9Yy6BZKZsNs0I0UceG923Sw8T7gppB/+YN7J2x1dQZJtN1mklYI6amCKiRXneun59l0gHG2vWoY3is4Tvhcag8ls2R5hqFkpNhoZU6rEcyrqCHpH/C6UynorHyUJa7TuoW4s3Olgf76T/8x8UPq8Mx9Ee5Y+JE7P7swHhzRuXDe8Yqcsn8Zd/vNa97feqYyhshhlxcfzf6lglMXkzZj/OvkPR0UmgmxURUUp0u/FnhCjeepSzZ6fY/dP4a0KLKlqIlejlbnm0qecuKYzf6VUH63RbxZeIwZyRy9IbFf4NUVqvVGGq4gRIxVirnytZMrc5noEucXlzuKa7bs+aAogd2FyMrlGylcLH/T31o+lLLbwc+jf2I3RpBd+CzmlBoryG+U05VeKcaluZ/OKIGoaSEav/MMM5axva029XixAt176SPnVStmazk2f+VzTaZpL8233t3hdYuU3ynJeJrjw7ZAovyijyl5W87vq6yzk3KIsfUyrVMreaqJ71nS1cqvKdRltSc2D3fe2cKJvcOH3Gq2v8HN066iUllYF24lFP0clbIZ+Wk1rahpLL9Cadn/9GupuNJ2Issr6ynZ/NeVv1P1RNA/qCyxLndxtjTaFpnGGft/pH7SXeIpvNV3pK2031NF2ZaWLDZmUhD9f7P6n03f7iCH60v9qc725UBcZdW/pv+RM9D+QUopGId0qT6/FZvepmYOQpmTyK+QHlSV8S3p9vbryp2yK0bZSRmoKrG+Z7rPKXkMpwcrOS4NJZeb6Og6JhKZts5iLn+MoYvU0ovnB5E5rrrOYYwl9xzlNX0ICPed0mer14slFmiiqjCg98jVfyZ3XKCa77TNaeGXbXlJezitQvlLTHENNIBdambm+hHJWcp81V69uz9JtT827Jn6aIdlVFmmCo+SmFordZZpusbuZj3JVt08fkt5aY/bOK5B/Zg3naHJTIlYoavc36+aprKnwlAbhQ31TtyU1ddQARlOFrsRrOpeWJGgwoPxK+QvqsacpjAAEzS8+glj3oTF/q3llN/fR3IZq2BVHTbvPkUCrgsp66VtG7hT0r6u221wVlOKuR7KQeasTGe2Xu/3vUOb6ptD/4nL6Whka/lIT7NRtl25uE392RfwaOZ2m2+JyvV7pGeW6y7kN9SPKH1T5bLcweibQJ+uiVG6cuVaq5tnCvNwf6eo+zrcaDM/l9jp6uz+qJs1Qd67/bfSvEGinVdohSumWqlupLgu12k3+KYVmGXq1UHe5PMrG1NS020Ppf9bai2b5dqg0o3XQt8jQzzAEtm45NXUfwoZ8aTpmZT87lGZC/pQdR/Wn0fysmq+U9RIwr+9EXmmxlnD2Kvgfgu1KOr10nNIAAAAASUVORK5CYII=" alt="" width="140" height="86" />
这是没有使用skew()方法的样子
这是使用了skew()方法之后的样子。
为什么呢?这是因为其x轴和Y轴的方向是这样的:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAYgAAAD8CAIAAADi5aQSAAAgAElEQVR4nO29S87sunImymHUCKojYMMAAcMDcM+GDWxAMGzAQLU4gQ0UDqqVU9indTgFNbxbxum6U9e36tL1VtXFvQX47WmwGnyIEsmILyhlKv+1ktD6VyaTIoPBiI8fH6LUX//1X//VX/3Vv/qbf/v//f//+3N9rs/1ud7hUhmY/v1//tvP9bk+1+d6h+sDTJ/rc32ut7s+wPS5PtfnervrA0yf63N9rre7PsD0uT7X53q7qwtMrg5rupbqQ3310iydG5fOZ7q4+qdPmk+aT5qvnMZ7770XAlMTiZZ+kQTc1Df2cqar+on5xHxivqGYIWA6ZISUeojswdBS/aXT0AJ80nzSfNJ8zTRyYEJKAoVjYWjp50Pn9knzSfNJ85XTjDImuiQaZXoJkBvZKn1iPjGfmK8fc2Io17yaINKDofIn5Mb3xvhPmk+aT5qr0pyY/D5kV5fUFIVOT9xIZF5X7JPmk+aT5iunuYMxsRCG3PiJee8YlcKbyPOJ+Vox57YLNOGjGdOLrPNhc3tXjP+kyZ/VPtwuzyfNl0tzxeR3rwxauB4M1bezFaMz/KR5eZoGML29zJ80b5Xm3FCuByvNeAI7abQSwdMn5g1iusD0NhJ+Yt485urtAk0Q6eFX+RONZXU+74fxnzQ5pjuUe2OZP2neKs3pR1JoQKkjESQigIyoJC3VJ80L00CM6c1k/qR5qzRXPJJS53sQYumkqdPTNaFx9xPzNjHQHNMn5hPTjzm9XaAJPc2LSNOEMzzNe2D8J03+/FmV+6Q5meb0BkuipKUlEIJBhNzNBHTiT5qXp/msyn3SnEzzfMZE4FcvExby2CI+MbfGfFblPjEnY06cLtDLtJegiSzIVxFOvXc/8J2k+azKfdKcTHN6u0ATNZoF935lv7IlEvj1SXNHGvGq3BvI/EnzVmmue1auCRwnIYmFWwLCPmnuS3MEprvl+aT5cmmuflYOkaBORn9lMyHq/0lzR5o2Y3pvmT9p3irN1c/KHb6CyaSZ1Bdb0CfmhTFdxvQ2En5i3jzmCEz/13/+2/JihnJIMUSyHoI28WgZupEt+pPmCWkYxvSWMn/SvFWaCpj+y9+WF8SYiGLoZPUF4lodSUNkr+hPmuekoRjTu8r8SfNWaYaAiQAXGinrn0BQ68WL4OkT86oYGWP6xHxiqphRxlRmR4ALkYwQDoEkomJv3A98J2lkc0zvIfMnzVuluZox9YQYSNP7qYeGhCII0PykeUIaijG9q8yfNG+VpgamvysvdPJ7AYQg0hwie7AqQrFPzH0xn1W5T8zJmCFgamJKfdEYSccjt9AoRivik+aZaT6rcp80J9NcxJguEWvp3FLHS5G4LvF5adJX/x2HAzDdLc794QY7/OJpgt6uYEx1kUgaIobOUJrby2Pu9YR7wweYDuHLWe/tMUFvcsZEgNECpAHF7eVGI/G9/UCKudcT7g0fYDqEhiW/g62+cZqgt9GhHFEAwaoQx+5FEkUQMXRW16ZJ172ecG/4ANMhMJZ8l62+cZqgt9GhHIIXVzEm6b03xhSQ/32GDzAdQtcvEGbxXcYEvQ0xphqeCFDsYRmCr3jkO/UD93rCveEDTIdAGdIb2Oobpgl6Ozf5TZeBQFKv38AjEZGel6ZV2Xs94d5AANP3qRfGkF5pq18kTdDbOcZElEG4LpsJW6s3IJyEYPd6wj0h1Lrax+QX6xbrV+dX573zq09/v5cgM623svCbYoLeTjAmmkRw3tuOYQGOFuCVGN//6V5PuCwk+HAVjrj9R7c6vzq3GPcwxw2Ws/Gz9rNxD+Mfxi0JocpsvmmcEhvbG3CWe9MEvV3KmAi/rX8lbmnCE41ZZ0SSpqlF2v96ryc8K6zVB+/96vzi3MP4WbvZ+PkITH7WbtJ+1m7WGaHcw/pAo76D8d3RSEQ+8hp7frM0QW+XzjH1CmPbpunhzSLG6CIhkigN0g98M4xpF8JILX+KYzf3sCUquVkfGVNGpfAhfbUBoSI8tTT2rdAo1CFBDvUdpAl6O8GYEG7Wi6SdvJkbXRzCa4ifRFjJ9QP3esIzwzYEc6vzD+PnhEqL9av1/jjHZGdjJ+0m7RIqBXgKX+2s3cP4OL7z3vtvj0ZBDskSpWfY87umCXp7CWMipJTy27FGPRlDy1mZ3b2e8KRQTAuFGSUbKJJ7mDS37d1arcot1s0mI5ErQGr7O2v3sK5Fnb4BVY6b31XW+9Vigt6eP8eEwFPvp0vYFkGmkDRy07nXE54U0hS486tzs3FhwiiuuFm32AAj1XaBmN4GijRtf0tsCiO7DHDeuzRgvKeyFwaBsfVMtOlBw/b89mmC3p6zKkczpl56JIYQgKZdvfYe67JIge/1hGcG51fnHoErGf8w3jvvXZhpcg/rV9vax+T8Yu0cyZGdlJu0m5SdtA2juQBVs7azdkveVRDu/PLKRI2NMFFR4q+fJujt6n1MrOqXrkBQT9IrpSdJU7CBDEH8/UYZU57wdg8bJ5UexvkAIs4/TNgWUG8X8Ekz22TTFLHJRmxSRbx2s04z4t9IoEwUMb+em3y7MUFv180xgZCEqB5vpKYAeLlrA1Y+jCkHd/i2urQAp91i0lKdc/1VOfuwbnVutfZhAj9KqLQN6zJOuVnbSZswQvz6XCmErtnQ3TA75rib1zwvTdDbRatyrLp7vt1MCbbQQD/DQg+h0J6c1U/3esKVoVwjW12YVwrr/RE7Vucexs7aLdYttgFMs7aLdYs1AZiOXCkN6IoPkTo9bN5N7r8ySg3SB9aSRU73pdIEvT2NMV3FRMAmBPsZurFxVCVVfK8nXBh2O7wf1s3Gp3U0vzjnnVusm62btffer85WQzkzazNru1g7a5OIki3nmFQCKZUj409uMd/AmK7rh7SBgZb8LcYEvW3A9Nf/5e/K65o5JpCS0K6OkF42fwSeQFG/H8YUg3NLoEtxA7edTaJIxoZxXAKxIzBNWk/KzsZM2qhEkVTmR3ofs/2NKLZY7/2XhifevFlbBd1BVMQbpwl6EwITwYMQn2fHZQNdBIsXtMz1XYg8pGD3esLFYfXeO7fYvG/bh6mih4nXpN3DuNU57+qHePWkA2nSkzZKmUlbpcykzRT/7vBIaTMpq4qR3axtay68fnzvbQNuNpD9E7cjpOwrpAl6K4Dpv/5deV3JmKRsBYcnBGgQm6AtgAbfKp97PeHSEGZ5rJ9N3rcdIMPM2j6MCQO0h3GrdYuzFTCZ2ZjZ6EkbpfWkAjbtEEopm2P2jMlMyszahm3lWZivNt/EWyZrq72+E7TtrxYT9CYEJpaM0M5MD8qQ/PHWFSmlZwQ9Acgc7vWEq4NzD5ufcQv7IY3SZtJ2NvZh9azNw9jF2sWa5biPyTyMnoxWSitt0l+jtAkgpZSdVMSmgEeJNCUypc2k7MNke/1yWy4FvoA40UB3+9XSBL1dwZhYeAIZE94hsJmwCFjHSEG2vncP+d9IWF06ukT7iBTaTspMYZhmzMPYhzWzMQ9rqtMFzKS1UhtdUkqr+CGxp0SOEhiFUZ4tuVVcBPQFafoyz/3yfIe1N2JYACb4UmmC3u5mTKDn97CAznbADk6S6kKz30hYi8W4RGGM0iZwn0lpFYd1dja2uV2gGKMFrAkgFRBqN74rB3d5Cjxh026m6S0xqBlk9nwtY/qaMUFvz2FMtLp7P9GMiQZgMBOwjXHK1ir0Xk+4MLjVu4dxc0YlZWsQCY+ShAd6K8bk9scJhBMFbBzK6Ti+m7a/mTodCFSYyfqKy3OQPdOuMQxPd3OfsTRBb9cxJuQCmwTMv9d+OG6ypRAm1beeez3h2hARJ6/uq8ho4m6m8NBcPqayYkx+OyXOlMcJJMTJY700xEvDt8Y0edjG6f3Xmv6GLI0k4KjpIsORr5Am6O06xkRzJRpEkQEUDWrnSS8uD3F9U4xpO0gg0KUwV13ikdsezY2P4x6HcpO2qthXuT/wJE5vJ2DSG2+KpCmM/ixGmt7zid8uWUBGDLS14x3ql4oJens+Y0Jk6rXNwJANEXKMMdEErfh6rydcGNxiNwRRysUhm9ltjCwns9Ux6P2vNq7E7Z+Vm3XYh5l4U5wv3wZ0Ks2Iz8alswcaWn7LiSfI0nATZUdJ78R9xtIEvZXA9PflxTMmwEUpmaT9A5JJ86exBERKQtTVua/OmAr5w+Nv+UgAu00DbZfef2gCk64Sx3y2R+R0nBePE+ppiLct2MUBXaHer6FnynjAHhQ3P7aLpZnEe6QJehMCE6gRRCbkdpwWiSpPSyuCpBYy3usJ1wXnHzY/17YDo2LtXxcf9FQB07RhTfislU4fyqmlvKlSFz9tpCnvFHcPux0jF0I+we4tQ9sUWZMDQQohAU1PeeM0QW8nGBPo4biiwQ6ErTNRc1xfIN1rfb3XE06GTfrVhydOzH4LklY6w1AYdukp75xsMabEfXRKrDaQ2hAqcaiETXlkd5gODw8Mf53QMMUzBg/eSLgqwuBuTRP0NsqYcNJBYAHYYE1QwBsV6Y7wigAJ7vWEy0I4EqAai+kIHInaTEpPaXxXrcptWDNFoqTyBHlAKLWxpJxhjzeFR2G+1qYByBuHxxCg2X+pmKC3IcYEeilC3g4qFvEUUQOfaUIwQYq81xOuCaszsymGaQFWMj8q/8bHdMOjbUdgmrWdC1RSOv5LfEpPyqTJ722UdyxrI0160l/rGDmB4Q2MIZAbpaXcnSbo7cmMqSkTDVgIENAC4LRIRMRApvaFgGk7Wtsf3tztVmfK0VaeHlJKB8ozFQO6sLI26+bO74w7GZIy3MQZqHSv3RDqMNALa3Zpbe5h6gW4t1U6ZJPSrhHsU0X9K0vBXpUm6O2Zc0yIskS5DXQpPTp2xizqDPel3OsJjUCto7eldYvd5o8iBukDXmilVIIY+wgviateePlIjCllFQ4MsLOxj3g+gZ3NdojKw9j5wMu0LnaE694001vuFfDseUwiNiEakUiN+W1igt5Or8rRQ7DzkIQAMKgCWryT2VaafY+wfxtS/YP3fifzltBkPCoojMmokYZm4bOdjVtM/TICtxg7Z2aUYCgd5+TCtRj70C7FBLTa5pgKshamq8xsvH9fJDoEys5FBs8aYW3YJ93qpjRBb+cYk9xpKb2fh3YCDQnZQCJGZ1t8uNcTYlhrLlQO1pxffTjazaVevcrBhTmjDE9GqYAa4fhK+zDmYQIbCpF+qYApoMykzWzsYsL533YJr3vSbglglFFJ70hTydGmvL9JpZMGqtq9ZbhgiNDzmmsZk4i7PTNN0Ns5xkSrhlbrWAuxjYQ384ApYDH3ekIRXPW3/jUypu3lAmWK1dmHKaei3WLj28AXa/MxTLPRk3KL8dV5TG4x8RDLhzGzNYtNSrP2EUlW+GuXgjTNJpOyYoZL6fDA8JpeG5Vr0UDhdwltc5JCktRxzvvIfTFBb1cwJpE6pPCE9AYs0Ihal0hJZFtx0bcIq3Pl3+OQzTkf5Ld2sT3Jt4HVrP1q/Wr8avPrmwI2xaFZBUwh3jysWaxZbPjg1vAigzSaW/IgTgeEsrPept5LRrZav1oX/76TnvtBYFesrYIjFTrbN+NHdZqgt4sYk1RfIkU37yKKPt/ATcyCOdS9nuDjkdgJehK/SOhj84HZbg0UybnFhXGZCy/CzfmE/1ZnZh0GU26NjMmtNiBdBJ1HfD1BG5hmo9NlHsaEl82FAd2SIGmJU05hKFfuAtdKuSWiYWJVNr1D5X5t06Ftt2cYE56PqMdFzPslaYLerntWrqcvsA1IDiKAkvMNfIaXvhNjcgl3fOy3A7WxdrHel5JbuwS8MPZh2lml9y9l2uJX6703Sz670jYZk4vzUEbP2j6cUlrPxswml5uxKcBTmGmKOwzSOM7OxodXZs7p8ZRZh+JeqtChwOMCa6KEeSMuRne3Jw3+CTFBbxc9KzegLyI3lg0hWkbam4g/Afz3ekIZ3AZANs4HBUqyWL+6OAqL4GLC303+PFO+xiFbGk+ZMJJyqzMPq2ZjFqsnbZrAtMSXEeRZbD1p87BusW515TRTGMe5RJfKia2QLL+eIO4mn5V7lAM6957rdKhNsobX/FXKmEQJbuJQQW8X7WPCUYBgKAMQAzanqFzRva3c7vWEIgR54kKYTZzIPKxdImdJMQUwLda3Xg4e1tf8YryPozm7OvPYHuANsFUzJj0bPWultJoCMBn9MHZx4b3hbodNJux7KumSVso+IlGyaR9mvIrjmd5H6YcA8SAEhnA+RXrc1jQD5v2SNEFvF+1jQmAC4UGs2yMNhiQAsxVx0fThXk/YhdXZxZrF2IfN6BMRKgHWId7U+6pX51brHsaEt+P6NMG0OLPYADdq0nrStsWY7MPoyWzANBs9G7u6PMfkF1tik5nLnVNhbitvDc87nmKMe/tpJsojmi7KGi3o8K1kVetIzPtVMUFvGzD93//178tLMMeEYETPjQnsRAC4jw5Uy+GIKbKD9NNtTlDMeReRrkQls/GmhE0lY5qNfRiX1uBDVnYx6XmROAkdV8e8M7ON00YP4xbnfG36NmFNwq80YLRpjskvxi95pkmbWW80LB8wMCkzKzvrOA+Vt2i+VTfQCgJzYq0atNulde/qXAVMkTfdyo/qNEFvQmAaYhCEplAgYDMnmm2AqTXvhRn1Sw1/x27CPHfaMBmk8s57F4dyxVySfWwbkeyyG9DZbVLZee/DXu0ws+Me2vu0Kue9XYzdOIvzFTD51QRs0rPOC3N2sXZxNq/KZdK0GLfETUxqeyRFpamlMHyL253sQ9uHdstXYEy4ObFWfc7U28AEmver0gS9nWBMhKZoHTW1SbMwnOOALc0ytRMxL7X7giIFDIr7uVfn0hR12hNQTjMZ+zBmKbFpo052KUdzLswEmTnu/C4Zkz9c63Eo59c8wxU3Mdmo/7Qk9zB+sQFu/GJ9xCZtZmO2B+Xig3h5d3jeI/7mqOTpOSapBdLJMFCjsOk6FzgTE/R2gjHhAzopdZLiDgheIoMYBv6bhnKp9AQEi7EPG54CsYt1i3ORN4XNAbYczbmU3qRtR7uD/RcbVs20UjbusQzbBSIYBQ7lvXW+McfkIhuKK3FudeF94iHSh80KxRZKtxi/xFmkfGJcXLMLE+Rxr0AEpjdHJoE5gUZLOBSbbY83jQ0RnpMm6K0Apv/29+V1DWMiiElPy0S8KLczog7U5SbGlO2/WP7f0SL72D2kFgFr96u1azERPof5720Z3q3OxzlsZR/Ge5suF+Fp3TY31cDk4xMnJj4lF4oLg8EwykujtoCACQfzE3NhCBkHenlvgZ3TBNNb7hLIYcSciAR4n9037C5pErnA09IEvQmB6RK2xnJOuhnAxGPkjhUAqN2NPmCLaexyK0BzyGbKKfBAptLt+1chOb9aOxuTnsX1q/Wry0QpbQQ3fm08xBtRJizArS6t6NlwVFN57FxCpW2Hd3oUJm5l2rApjjcPQr5a4UiQmZPI3gZoTooXTDYRPvicNEFvJxgT4vkn24DQNQ1PAx0L26iwcbzY8n2eXVqdXQIk6bwAZx7GzsakwVS5zTIDVuAveeuAncu5mzBpZU2a98mbBiIeLcavxqdHRmpg2nZOpvmj/RmYYcEub6S0e1qkzXykSwGz/H7b99sO6E713Gf8i3Mo2WQTgq0XpQl6ezJjQjCFuEXEmHopRfpiTQHoAV5q9+khe7e4MNu9g555W4mLk02r3a/Hxcd3d2RqrpbhV6dn7RYbjp2Mmwa2rQNhtsjUx57kbUcBZcpDL8O5cSFZ3OGd1+biDLdJ58+VJzeFB+u+zMknMnPCST2dBhij1MDUnWx6bUzQ25PnmFhl0Z0AAR9sbnQmCOSx8R3Znm7sab+SW9321FueQgoLXnm+qXzcpMCgTKDcYssHVsLldtM3znsXZs3DEd1h85Fbw/4ju21Eqh/iDRuO5nhYZXorwXYKeD4GMx3ztB0gFyaSAjbZfJjcrO3jS535LTIn1ndY62V9pLigyaYBtz2XJujtBGPCMV46iKOJH8KYWNpF5C+Nr9I80cr3/7vVbRu401ROnF0KD52kWadtDS5MPMdl+4RNq3NpjslWW5lcKtEuNr6zZE4HMy1he2RmOhVjClsiw06o/FaC9CicmpRS25kqYS94Pscy7KW024ngxnw1VPL0HNPYIEj0E1cuP9kEui3i+1iaoLf7VuVO4hfLhM838Cg8PdHM99spXXjiZN5NeOcN3HaxzrvwSFoxneSK80+2z8VQzgYIK6eZ/OpTWfG1KHY5zvuEqxrKRWTZ1v4PjGmKx79lPErTUhmVlI2nX+7WCp+o5EvDuJ2DpJ41bM6Mmckmqduejgl6u3VVrtcGCCQRV689EPCmi2CLXp/LmJqW7+Iyvw7ooyMQpD1K4dCSYtSWRLWV8Bs8hfNPXNrVXQJcOFsyLM8djnmz1csI4lbJuXg705TfTRBPgMtrdsf9k7MOC3P2cYQk95YLcM2A2jnLJkDrZXvo6tfuTNMZaU+kCXp7+aocQmqQ9AgNZvVSF8SSsvpDdeM9DpA+bBwq75/0zm0biNIhTfFv5E2pRtsUuFvtdsTlEqlZ2CiQXwqwjdTS34OJmzSCU/u3NuUnTjIw2e3Y74xKkWfZRzHVvVYf3jugdi6NIRyh99NTB3RS3++nCXq7Y1WO8Hm6GXAMPtneA6ZT/PRUO4//SLcsz11yi3MF+uxRyeV9BmkSPVGqpeBT6WG6+NDs6uysdXjFQHjuv5ilroFJFy+zDGE70iS8XmUDJl1Mluvwxs30hsut+l8rdLu9Md9p5gbyLPLXLm8SecEVMUFv963K9dQkokI9DCb6CuJGuiXgHuleT/Deh/FdsRtgQ5m4L6kAo7jpMQDTHq1cOfE063i+7WrDsW3FK0zSy3grYCreDF685HLS2wvmNjzahm95qlsrZTqHan6VwJsuziboixhhAIOPGphUefbAgLSjaYLebl2Vw9WN6JfNE/+J+Mp2Vm8BTN6XU0tpUFYTJbfafMrl4YncuOUybDhI5+oGVEoHBqR3WE4b4lTApBrz3Oltl7u/BVey6eRc+xUOz6WDzOClowHW42hE2P9KDeiGfVOeJuitBKZ/KK/XrcohRAlmK2jDiCTsZdVp7Hs9IQe3utZst92fPRAnofz27qb4yjm3uLTGl09cik+TuLxFO+w82qa3j8Fsx7wV47U8nTSb4jjKsM87PL57eNzkCwfKJmmqzo4GQB+kTXf/KzWgAwcWp2OC3oTAdIkQon5joDdgC5V2XMImv9cTcnCrq1Fp/7eYgarOMMlHOOVlvpjv6sptkPEQpfTQSWXWxsbdSQUtepj9IC6CUdyyFLd3lmfmvotKBwJjbyLXwLt/GrxIiKF4kwiSRjlU0NsJxoQM61ilsKSU/fU8PPXILd6P7T/c6wkpBHkKWpS3eq/pKf+ISuFI/8SY1vRCp7wLIWyMWrdRlVtd3nPktm3fzX1MG/TY+NJdnZ9QKVffIiot1cG+ocSXqe3q0LYfkJsTiaWjFrhzpWaapH4xlCbo7QmMCVEikgMLRnhHQefDxgtZ4b2eUIaMRG5xdj2g0oZTLh8mF6uwbRrQcUuUOdZqdTa/5W3ZqNMRmLZhWkGU4t9tU3iICUPFTfj8/xfZGdAMMrOkB18DgzhR+hTfJU1PHsSV7nP1HBNCbZraR5pExJia3QXdX4H9GBdzryfsDp9cXcmSdteaTm4rdoHnh1QCfIQJprgLPDygV2CEW73b3sEbz12qGNP++ZLigd44oxQ3hYcTCw5BoEn3rvjVNXuaPrDmKhq1IDRtH3/BgG6UQwW9nWBMTZ9HHL6nFClllXYURIk4lwZibvaE3eftYbr0wRSf91sKFpfOwN2dnZJOI7E+vKo3nWcQ/64uk6AGYwonc+9W37Znem3Y5aR0mDU3sym2dIc5+Ga1vlKAfLg2pJOMacDR9vE1MCl6ZxPrrXCaoLeLGBOienD8JaJFSLYIaWLrxSq0iLnXE7z3mxuvrkAlk4/WDe/jLRFqdxrBrE18nXdYJrNm0lYpq5SdtZvDiQLOr86nySnvXWeOybhqK0DY8WTTTiiltuU8rbR5lC+2+wJnVNIBsvABxtSLZ0lWr9AqW2ZANwYCQEzQ23VzTAg00herTalGcIOgi2bV2oL8Nwludfnw7+0oy3geU/tkSz3rPO1t01twIzCFa9J2Unba3j3pZuNmbaoNA9uWpbSZO27F3L/SUuUjUJRSU9gusNXgRu2dDz0jAdFBYK4gRtT59M2bGtCxnjLKoYLezjEmHAh7f1lQQLLttTrYiiJrAAq61xP2IRxXEt8+YNObUfLrm2L8Ur5aTpd7lyKN2gOT2X3QJWBVwBQmkjILS0/wqu3puUCU8ofwv8mv/15TNb5mGBkQ1AY5cBeCg4Bf8AM6umqEU3fSBL2dZkxEqSxjOjmI64yEP+ETPuF5gcE7drTBpTkC03/4b/9QXjxjAkGKhX+c4u5T3t1An/AJ32mQESUap6qfhoBJNA4STs3wafYxd7fOJ3zC9xuuR4MUc5oxiQTC54BgeLq7aT7hE77fgDo4MPQ5uPZpxiQa0DUvKWOqsr27dT7hE77TwJMgfNFp79qvZUwHWGEn9qWrcmyeiBjYqgGLs69b8sFDWn13q8tbAXTnr9n+xjMDTHwjblzUN0qbcHKAUrsPtfkWl5nCfgIdFvS0Mmoy8UynyWilw5sOtlumsPCnw1Jd3n65aTs9Q5NfQnWoskunld/YKLsj98YsFvc19na55/KohHgNIkC6gt4KYPrv/1BeV84xjTk8HY/ogk1Jqw+0gCrBXT4AhPiyk21zwOOARPHs8HwG0w6JVAFSYTNkxCOdIytg0iU22bgzIOOYzkfrmkc4fE4bpe2krdJW6YBKYXe4Ujq8V8qt7rAptHqzi88vd3HpRTKlBl6qccRuh7Gm2d2yOcNjnTYqsTeyvT4pbdCbEJiEFZMpUftnUh0AACAASURBVNQwA01CfCBKx+9KkrzY9PGQGYctAEhnJHqk7Uvh5Nx0QKUpSZPaOJSpyFQNTFYpH1FJO6XsFBiQUcqoSZuH8Wt4HYsNL/INz82pmCZ83lBMT3p77i+/liq+HiacYxeOuCsfBImv0uu8I/P5Oif6PNqQcBeTsxKq0HR1uRIipFS2Ij7o7bWMCccypNpnSBYL59K7iusWBxAFtzqzWLODpDSOC/AUT6TcoGd7qfcWsxGlBE/VBstJOaXdlOEpD82sUtouNr7L19twbq99GB1fNmfyEK8oQWulMx6Fg6LCozP2kQ94cenD9kByeiHVParGJwEY78DHCrRbsQOC3nt6aQehuQLslUFvJxgTIRMiEMKYmlXF0AEqF4EnunVbX29xAGlwi0vv6U0P6y75xXOhItY+bD5jQKvdQyQmvOMkIVRGq2oop6zaTRuZggfZxfr4Ol/tFm0fyj7COwu02nOlEh71pMtpsvxUzYZKi41vx8svFr7viF7KCHEyxSYT0RYuW8EIjvVH2llasgW9nWBMLL6AlJIVHVF3r1FFzdzLVtTAX4ExlVMtbj3G9G5wizWzCS9H2VGnaftbMSbtNnjS+zkmbcIzdIu2szKzsrOyDx3eqbkHJlMAkwozU5niHZ5JTu86T8dILTe3yCD3rz2CTUZ4E53hPgdoBIdQhFF+F/T2KsYkAgtayycZk+gWWuMdwW50g35oSOVGZ4LdYs2kNw5TDO6OwBRQKTxqF0842c0ZxbMrJ2UmHYGpZkxTLEEnWqbn7eG+8ACgW/LTyOX70Lf3wbRV8PwgAAUQgBB46nk+Z9UyrkR7B13xvmBBb+fmmEQ1R8AClh5SAVuuCE+xnO17DuUuOzkkHsNkZ52xKRCo5lDOJrpkJ6XDFoHdhJHRGZ4eOm9QyHsIivnv3WhOTdrmZ4wfxRkJj+20Kbc6Vxw7dVX9xfpi7ZY1e7q/ZG9hOUH6ynAlqZNiUFjHBL1dwZjomg8AFltzZLSFMzWakUnb/k0Z00UhAFxY19u2C2z0pgamsH0pcSWrlM0MKNykVZrA2ubO9eHSBW8Kl0mvXTHF6Xc2EaXwTnO3OLOYbUnujnOdUKNifyLGUPQtWCldVAK9ZtRZ6gRBb9cxJrrmIEyIGCkujHTs1tM+Ut/3ZEwnQ+XSAZjspA/zQIdg4l6kkiuVE0YHKtSApGq8mNjWVBwslV5Cl7hSucXJxlOlouD37WOibV46sqM9gnb+6leeK9FeMza8eBFjwkdhY4xJBE90DsgtLMz1k73Y9J8fyrN0vffer14nxhQ2Z+fN34dQEKXd+lp7gFbPWU1tVFJK61mno+8SBiUkCsdL2WKX1p2rcgOdIm20LAqA4xV2BIeXiKMBkE/Q26WM6UmQhLTfJbewNoSh1V0+8Lzgyg+r9z4B05SwKVCn+k28R5ZkduO4qQNMCY905FDp9qmAto0xmf0R5uXXPAXub5r7Jl94SbvxwHhNfjvNlX7+faWU+uFXvxzz+e1PPyilfuenX+TeQUn7FMZEf0WGdXR9egyF4DuiW4hCe4bVyf8WB3hmqGq0ej1bnR4ZSVNIul6V27OebaNA/quPSNQexNUMKxxGXmLT9p6F2BDbceY3Nkr3WTmkH0WsF/egKobnSgGA/vUegFb386yU+uGn3wLegYjUcp+7GVOvYnSzIWkGbsFZN9F3fZNzTD49E5vHdYtL89ZGFwv5DWDaoKc5tWT0Lk3rmsw+cWRP25z3boLJle/OC1sHkrk79/L5b8hmDvaJ9OWscXJGS3OlfMvPs1JK/fibIvLXP/2glJp/Bgvih3X7BEFvVzwrNwZPCPDTBfWqDWJ2LyVYr74FvNr2XxTc4Yue8j6j3tx3NWd0HJEdPhQUaTokqCe/dR677d7fucSH4+LM92LMbG5sFIGX0rZKWx2IESmGQqVDVtWorUGXJN7BemXQ2+ln5VhYoaVE7u2lZJG4LhoEr4GKFBne5QMvCcWW8cVVkHEIJe60rqn8WiPRgV6ZA6Lt30aVR3PpSZTyhZ03AhNht6CJ0k6B0Px9zvwIbn/jjjQd6JLIOxCMrl9GMDLHhLMeQqAmWyEaDGldus16rThckX3MXT7w4uC8r4hMDUxpk3exh1s3ACsPBncz3PufjpiVX/1il+3Z3bzlMm7+Xux+g/vLtwvQwAGSerCjBVyAH8HVIv16m2mKdOnXqC9QVeskC3orgekfy4thTMioioUkEQoMqIAumrAMESRV+bzY9J8YGnXZvYFyG81tG5FajKk9dttvBJ9MF4Y6Q7904IlJbznPbzyPrxQefubmwsAAB+IaIjsnjbaNSgD3iaTpV4kugW4udb2iXxcCU1MCZHwHslC6SjRpZHsPQlScMdGM7HtiTH71G8RMzTkm0yI7xMxRPSl+4FZabxPh6ZCW+BiKO+wYsNtRJ7c+xMsChxSnek7B4QvDlWhADDNNqkOXEO+AXS/o7QmMCdcpAgrwAIpXbrPEk9SvirHfCjA16Eb1dlw9meINmM3J7+bsUqZRh5mmCqEmCtTs6nzS/+7x3ccGWHuxb3gqBUUQxNhYO+/bP4VKhBhbib/89DtK1XQJ8Q6hawe9DTEm0WhINPLCNY5kghA6PGVPhgryXm37rw1l9SrEqYdyG+4Uz7vt8GU35dTYchmIUmMotxNrdS4eZ55ebn7rnHcOPHFA+njEzpv30lyJpv+H6zc/qsO+AcTNaSFbNwa9jTImqXsTtIgepoHciiVrwykRGfYx93rCZWH19CDIrQdgIia/j5jS2BEe4+t5Jb3nSltkper0dR0/0eXyQHk+yJhYjyCKkM5299jZUgCT1M3pWlc3Br2dYEwi32Ylo38SMSZCy3SC89TvO2BMOdjF7SBjOjImHcd3jU2VaS9lc4Zb7xCq8SF+7Y/L3qgJbNPzWaoiGrX1yYh4BEcUOsaYes6FM6b/+N//sbwgxoRDfq/mcqZHNfOZbPGKcDLc6wlPDlvt9sAU5rnbjKncKyCcAg+z3eXmzA2zvoSiKW+n3QcxXTINNILDMzwAEw5J4K/pa9CbEJho6XtaHu4fCNAVcSi2jVkt06i/v+71hOeGgqTo3fbIMP/dAqYi2eHwE739Wk8tEZcJS3JZElcIRmj/nhMsiffKsXYr8rXqEozgkEIPQznCTfCfWmUFvZ1gTD3WAEsgSCxqWjmUQNmC9vHtMia3P2VAzxlfrOpsF2huX1JHRMu7CraXoxxHcJPeP1Jn7OO2V8WJAu8vdQLEdIk0KbKLStf6i4gxAWUFvQ0xJkR0lgQh4oI1lOIIqx1CBta8vm3G5L1PDEUf6VJvKKcrQtQYsm1v5QUurbTbXqPg3xmbePsf6M6RHPajucv8BXRz+ieyrKA3CTCBiI5AEiv0WD1FMuAWgJCpQif3esJ1od7HFGPc6u3i0iam8tqH7SUCxyPf9qed1JCUJ5iaCYyeTONs9bfUvMyKEP8i0oA2j/S7Y0MzBGQ53wx6K4Dpf/xjeQ0yJnCc1VTKmPaFqMFo/yQ8FZr9BkJ9SEjgKWbOSOSUsmpqA5NuIE4DfZqEiCdNUzg2YCfbGwYxJRc5M5HDGDwRPj7mhr17+y4f9CYEJnYQRMTgihhoJHichZY40Julv/d6wtOC89671aWjcov3xSkbZ5qOoYM41blL+hB5SLAdI2f2PxmttF2cW+950QASIJtv9pTnwaIHAawnnsRKRPJ+hkFvz2FMIAbVzcDqFKmntOHZfoYGqeq61xOeFJz3bhu+RVTSkyvGcfUcU//styYeCa7dtPqNb2diA92HDZoujRS0XwzkMAaU9O198YLe5MBED7uIGFGTIHiMaAHkwMhPPfn3MW/6XrmxsHqfF+PWsAy3vSluD0nNVTm9500qwZDaYspft0O+d2nqkV31fK+2i3tPvQuQYsB0xxgTixcg5WETD4kX9DbKmIbhic4EH0CJ6ozcJcJ1Mv97PeHqEEZwXs8FEk0VJLW3C7SHb1VMAU/T9jW9+VKpKod61tzM5jiae4/BHdV9DpjuMGOifWdgyIbTDpF4I4yppxqORPCVJBKLiBiueinYS+S/1xOeEVw8rHKbVNIFKukeY6KGaQ1mtCdZ9d/eaC7+NY/dgO5NmqF2vLOmyxowwWgQvyP8Qtp5S8Ur3Oc0Y2JFIWJAHiRtLUKP0p5hqOHv9YQLQzzBf/XFzgC340rF6UgFuLQnv6sRWZMZVX/Tr40B3WEifKrP9r6/LeyYPSOdPfJTM386fdO8cYpHOB0GYUFvJ+aY2FJBNEG0Qyj0QsZEQJKEYd3rCdeFOLVkHk5tK3FWb0O5coOlrhlTZw1OleO1Jh7picApajPB9pzK27TCuIcjMdKOlrZe0D0vQYC+gwe9nWNMvYJpNGkqDtE1HYO3MZ3sNMO61xMuCWF/kIuoVM5zb1/1EZUYxrRnTw1mpHdQdZgOJ8Z028juMJp7h3B8Vo52CpHBc2OibhoEKGkE6RUHOh1Zu6C358wxgcpFvtKZIFpDmo3Imcik3TZv5xu9cNg/WT/hYeZye7fTzWnv/rEn+0HcblxWUSdVQZLafZiaqKTUfne4fUNgOuMUSDffs2p8dMLYM+y2F8kZ9HbrHBPylW6hpmoQbsnSIlaYpmxfhjE1hdxeNOAiKtVcydUTTMUO732oBnH6iEGNmA2DJrX/6YBujcsVezXepBnQLm2YMSFDDYL+4Ng34LZsWa1Cg96eM8cE1hYhLAjoItcQxHQjyTzv9YTR4Lb/dvNKB0iy+yU5XZz6RgzluHmlIwapPorlme8GPB2foak6iTvfxIu4CYIIoB+dz5b2BbqgMYqwOncxY0IkEKm1mS2N5TiU4GDfvLi6v9r2B8LRP135035eKT8Nlz/Uc94EMLUpj560nsMr4ZxdrJ5NgzqV6DbViNZiTM0a9Wr6ktC2OikEIJngXa80ZsApwDQt3Ah6OzHHRBAzsM4IJNGZD/BJukQa3TA4frHpXxDyKWsbV3LV03C7vUsBklo7ABrYlKaB1OGx2zLY1ZnZ6Enrilu15r9LtrUJEGvh9//fGi4AgssZE4567Bii57YihN3/FPR2+lk5wo1pyZCGYQkhgheXkGdcjK85lHPeu9WZ2RaoZPWGTfs57/KFSxMBTNsskp4Nohm3Oj0XM1b1AHC/HVxvv2o9Fe9NWd8Dlsqd3yD9YXtBkR9dzphEZAIv/RRjEoHFgKAEuiHJRDo6mawvxld5r5zLf1Iwc70zwIVlOL0N4lrrcdu6W5MxaT3XWx87Uq1eH5+n03sMUqpc5mvNMQEDutcFsasjzi+NAU19GCjPlF79FPR2jjHhzK3n0nSzgVCF6IvVGq5cjrjd6wnSEJ7RdYsreFDmTYet3s29SxRj0pM2j7zpkZTCe7+94EDv0Uc15pgOT9Iprcp9THVZNz06hxrzwMBiIEY0sMLdCrmLLqv4KehtdI5pDIAReiVNyd7CqoOOaZZIxH+RoVyygPyMbvHI23R471tzttuUb+sugKOApVnHsxZgUDBzDXadhbwWY1JhK1MsLlYt1/ielxGMWabUSllKIjJ1ZFBCJ34XxnRGZWzLIToCG1vEM1mpOvF32L8wZHddnV+dmSND0Wm/ok6zNju3589O2gVcHJdApFUcPcfUeORl3wT75ng5b7K12QwgAuECY90/KJXI/tk8sdKD3oZOsBxWEAtJOGb1mhP/VSQzXcf9Xa+2/bGweu+dW519GDNpPWkzazNrPWkzaT0pHRb1w+x1fF5E9RBKM8CETTAtTu3OWjoM6Lap7v063VESPWubHgR5ju4EgfEakZ+LYohSCHZDD0cI98T7cs4fg95exZgQfEGyHegTWGHwZkaM4O2HcmHa2wVImk3AI1v8jdekzax0Bqk461whQn9Vbl/ibvDYkGo9jOPqQeL+w/4hlUCdAiqZKQivzWwCQmURnqrYdr3qZ+UGgGDA16QgyPbcckcQVIFgTP/P//in8kJX5aTuTUMM8VXUJ9T5g3oXZdKOv/txrTVNpjQ+eO+dX519GDsbO2v70PZh7EPbh7azsQ9t53jtEUpnhDogxPZtagETuBjnvX1Yfqh4BEGtlCoWBKO0O+ED4D5MksQdliNdY3f4lfglsOcxuoFTlTHHQdx2QIy+Ywa9yYGJluYStGbhSVoKgoYsCPYSVEVfaNYXhuiQAZUeEZLcw7gSmx7Gzto8jN1xKKUnbabMniIQ6A2JygnpkTkmH498Slxp0vs3rByGbPsSJ6VVFCwRJW2n8Fdt8JSx6bXTTDLLZ/HizL0sFQD7acJxcDGatzSHcjwwEdUTab+Zz4DWkHgpF2XBDsCvlxq+KKzeLiagj3sYtxj3MAmejJsTQs3aPkxrZKc3hFKBPemERkdUEgGTW8MxBhmP9nNM21tStoLSzJfSKjzgEseeGzYlmW2BTW4b1r0oQAABEnMkhr0XtGScK4yJ8QrGhKiexQhQCwN9Qq/hCZI1xp7emjGFzUq2hCT30AmbtHsYuxi3H9CZxwGblN4P6/SROg0Dkz+uAPbW+7ZCA1HaTSrpEpVmZfeoGsZ0xAMrz2i7C4ZaTaMlrJ3wIEQYwvhFTocgQO2D9ZnfEDARJEKKzb0PCEsCmxZRjbRVgAa43LhlntCLX1yaUTJuqa5EnUIaM2ub5sXNXDCRKQ+awsguUKfDXI98KOe9eVilVDygMiwCbp+VCoO1NGQLeKTDSG1SZvu8I00HVIozUJE3veikAd4V2Z8uYUzSgcXzGBNXYtDbEGNCMIj2c5EiamAWodtAa7FtQJTyfkM5t014623gVkCSC1wpDeJ6k9+l/+tJ6zltKQhQ9TgeFOc9PKGzurw+WMOKTn+3WaRpP7RM8NS4vVhejFnN2r2w82AMknCTC+EJKVfqlaLiJFUIehtlTAhG0L6NaAcnur3EIDI264KYSxX5ns/KhUGcXcKoTRd4VNKlhEqP3RxNAoIdadrQIREo+zi+iRdXhPNOFxPV9qHNbI4DscyMph1X2qfZkGi7K+/SygO68ILMl7QU6guge/csc3h0xhaBAKvIqbkSg94KYFr/qbygOSYRTCAaJOQ+UwpO3KSStH59gbmjodgfEGdY8mLcslGnOMeUIOlINyIl0Rsxiewj+nzClBZjwoJ7WF0A337eveBoAWXS14w7mTTlNOWoM8mZlu2ml765lzYVxoBFgwziXlAAdgAhYhh1PDZSCXqTAFMTRCVY2E7GgiubJ1IKHQ/CPJbzy4y+HeqNOYs1cXdSxKAwdkuoZApU2vGUbfg2FetxGR2K6acQXwETqgq7mFxEBYsbP9pKn1S5fcEU8dvEfI5UW0o9Kx2nmfxrlud455cOiMAYkU+xIvXcDZcZ8bvFuacwJkQ7ICccIITsjWBzArqjc36BuSMhyxGmb7btlLMux26u2F3ZmpdRmROVhGW/Qhe/jjOmxaZ8ttzy/PqGOGExLqNPiTh5alwVKdW2eph/MvHAgxc1U+NZOdpfcEsjWBXuBYR54/DHsjwJ+Qh6kwMT7ajSNGD8cKdxBrlEX4tMXmPxXNjESCvoZje9/djtWtpNeO+I0nF3pQmuPusDjToFTKsrmE7FfdQelQqU2SXoopLefUVPYrkmUKYO+ouIH+G+RpTCYijO8pBSWv26EJhY+VimSiACqA6k0+i1tAS5R74Wmr0ruPSyk/yE2japnKaW47CuHr6VUzPV3wqedjFngMmvPpIvdYCeiDUqfVVqB1Vhm0J+UEaFyEkd9hmoAr/MlFflnH8+cXKr3ZkK0meDlkZ41knyIhUJx6n6a/U56G10KDdMYdhfr2VMoE7PM6Yth7ufldsHu9gw8sqPmBweJatQabe3u/H3MGtTfD6zj8mttgSg499tt9QGT+rAoXJKVeJXyZi0npR94TjOg4yJdm8CcZCcB8hL7++AP4I4WMQHvY0O5XBpmqoEucywOsD2IHQE3t6S82VGjwT7MHk/9HFquRq77SePC4fPAKQOaXYDqHPA5EpwrAZoKs9n7cdraQN6Y3Cn1DbrpLRSofr2tWPtrkHSYwWR3bLOxRqwyDVE7o979959hlblzkgzUNum+ugYJGeciNLNXyV7pd2zwS7WpImb4xbEcgN3HpolfpEfjk2jJKUnpY5TOSnByaGc9251aa/5NrQs9x857/3q7GLtw5RbLvMcvCkqkpbk1HH75Wt3V3ridAHWEVj/B033PNLR93LuADlp8Tfo7fTkN65EkZqaycYIpGhEhqiSk/OVdt8I+wld8zDl2pYpH8Qtl94bQ6fdxE1BQ+pVsO2nYWDy3oV3zNmHCccbZCgJWxPqd+HZxdrZ6AQ6uuaDeUNTnFwzr9lUuZMSgRXSUcXWSI82wBFMLwd8wIQAX+sKeju3XQBX4gBSjEES22yESLjFEInfgjHtzhuK7GaOJ+c2h0I10BQTyWl+J/5tr5G1H0kZEbv4Gw4DWF0fUJwL+9rDeWyLPV7h9k0hrz5pFzIwaWd/HQpAyc57H+HU1U9Bb6OrcmOMCYcn4hYQAWnQxJuKAKlO4qcbOxec37mceZhqkrgxIstsSHXhabu3mNPZnvM4yZhanwllDun5xjO/QSxAwAscN/XcASyFdRzQ+9iq7WOC3s5NfsOFUfE9oJEyprFyaWZLN0Mr27d8Vs4VQ7bDvHKGpMMmRr2Drfy3YFh5v3WauzkJTF8+HM/G9N57zMAQPkWb9LUDCML7xggamL7o1y/aLkDoHfNniMjQmA0iJq5TEUgVxd3gE7tQCbB6M5u888jUK2v7HYm7xazd2ly5j6mYnJ61mY1b3XcOTM0wbvNSF0N+YmUA4WmgXNpbiyvo7TrGxGq2lgkBFBzpWFXi3PgEY3JvyZjKEyltcRVbmcpn0OLfco/SgR9FMFps3kDovb8ZmNbqw10CFAEyMJAxDdAitlDway8rCRVifCr9DXq7aI7pvO5waEDKZeEJyV9UqSLblzpDHRru4ezDxkdPikO+87O7O5wqTjjR6XP1eK2xs663kt7NmJozU8h01Wh5zbYu3tnnBhgT6/PIuAHvdKWdt1RmlkZVV1De6Yd4Wc7WixQNtcYgic2EbR5E0V+BMTnvirUqk/5uh5/YfKVH50w8+duY9JNZrFtcfCFSq5p3A9MxlIsArzmvsioLMzDW56XjhgEjP8mYaNlYkC0+BMUNMSacdAwnQ6ANvL2nMqn66JRvw5hc/3Dd/V+XTmvywX/CwryLf73fLbTn94tQmTeASQYHb4jp3dCRNe5yKLoB2NsJVwd9p/cBlwEkEyJnB3Pbu89zGBNSyZ6gT2JMeHvQ4MvHvNezcq8M78aY7gobKj1s20iaNsaaNO4FA/6IuKHAC0g/Im8POnzOHJO0l+jVHK+PSOl0i+LN0IGze73ixvDdA1N6p+Zi3WL9WgDTgC+IRl6Aw8s8q07cdBl8TAMnDqrcgMmt/7S7rl2VI8ZQLMEjssKVclUbAG1/o2fcG75zYNoafnVusXFozBoS4Rq4i9GGimOZ1A1pIcFhzT5ZUKEcmKT1EXFCulvAMx9GGalBtDK8yS/uD98XMHWW5Jx3fk0LdqDZDLhGL+XYIEMET1IhhfAUFHkdY0IwG5dS2qI40hP507INdETpr12diw9zhc/OrXb7vDi3WrsU6VPi7d7FudWlNGF1LBWx2CKfzl/6a133ob8HYMrxdp/S7sXYV1xe7gmBNz2vBzWWrVM2nN1lQthG01RAk74WXIgY5C7aKnpfkdw6X0eBSVQkog7C1emvRA0BsBDLhlSTRUA250uu4czPSLW0gOmV1znhr7mLNlHiVzYr0MCaHkHLQN91XjO93DoyyIGJriQLSaxkdJMjmfeSgbmNQR5tUjQa1tle9QERAGw++N4jMLFFEx/wv73GAsUmmgMvkY1B0hNtQadEsIYukU6DtNSA8J2vNTD98+46w5hA9CGqR6uAvhf0NFw2RB6kPVgFSs1dWh1QALZenUiUMYncG6+ItDWHyxWZAfIr2xbnLZYukbZzpKXYvgEudBSY2DrgbYmgtagtwdY6xAzLJm1UIudaHmkMrXC2pQY62CrDNjDRvQXxk1STyI1suT1fwhVOtJe0vkRzsHUEraVXQanGel9ZXVVfL2VMIidEpARrK7JdxFwGZDuT1SWXCE+lDSRxyMsYE61MolGQG0FcJmpN+DCI73gDIXUfSACaH64xGhAkfUAFTP/zn3cXMseEtwTZ0460BGvcbM6gbGzbEHbJaoxuP+KrBC8gWxR1sJ169VblLmi1se6KqAsNK+cAGsoEbyDQigYcE7E6VjmshyK6KuLlwIRIM9CQSMXoTolobCLnUcUJkBfU2ECPBNaLbRdQFZiuGMaEGAmNnrRm2HtBWARdlIADKeiAmeN1FJkEoltWh2wFCUn2944CkxS5EXUTghI6ZX2m106g4ugbkVYHuzJpk9cp8e6RTcDm2W+m9qrcGfFokQZEpc0VhzbkJ7q/kYIOqx+p8KBu2fzZRgHRLX0+wZiQFmWVNaxTpL1FbUy3Cpg5LiGdFQ3KY/VioZPVJ1IWPfmNCENXEBRJ6vCsqgmxSQeDxGYzB80GlI0Wg63LQQCRXcGYPgRMA11fr6VBzbIqQxqeyA2EJEJUtnnANsONAzGRk+DLarJVXJcx0RdbBdalEfTsWQLsMPxPYAvi4IIIQzgC0uJSSGIFAw2vb6WnGRNeSUSPYwCBSDKsu16erL8hhoU4Ld6RgvXCNYN0jFXmEGMargLozzhUEZn3UFLa8bAeIcocVwXe4nR6VoZeShwQqsSnGVMf86i2Z3UEgsi1uQ18ZX0YaS0wDdi0tKhj0E/XfR/DMyYWd8ZEolMi1ccLJZIN+aGsNWmxWVygAff1SNe69wmMCZRe2u0QikMaAMntPDyJmgq8ka4Lbnx4EYDdEMXxGyxZqdhKEbkNgHuvpk13RYomVETLg2gJuYv9KmpWXLxeK+CNnj48YY6JVROCtcM9+GXpCgAADmZJREFU21huuNvTdaFvF6EJqGepNhC/JVRN+9jinHSOiRVjwMGIRhFBEpItLQN7CwFqOEqe0RgLJWzdRfLDed63KkfoHYkZKPeSPoT4aez2ky2KOyoovxS5qgQ8Y6JVgYDFyVqDbSHqdYgScZVKbbKZP1EXaZ+KVATxWTZBFf/CVblewwznBpoFXSIhEu0hbHGsg7GdFVg70ERoGRB1YT6JMiYEqpDWF9kA0s9J7QGRXIRWbAxrObT2WLAYqLu8A6OzetWqHKgdMAa8FwQIWlN424tuxy0J0fNJvUnRnIxHV+VoNV5Va6Rq0io3a4Tg7CXeO6ZAkbWzvQVtUWNi7H962qocrpGxvmKg2XDt4EADds50fQdakTAFPD0oOQ5ni3OiVTmwH76q1nhdCH9DxGaFRLAMdByRA/b8C6wLrjGpGFWypzEmummlCsVbqKk+UCSiLJHhgjoBc5MaE65qkWPQLl38iq7KEdWhk4HNRNcIUR0oBnIXUgWw7dj8m5KA2iCsjs2kdzsiRpXP0+aY8MrQNekpbswILncPaSlce1C3SGUjMgS7xyGdQ3NMuIp6AiBA0CxI2j8RBbHqZe1WlDkBWEQbSQF6zLTY5hAW9JxVOVH3RdeExvU65QByDSE6n4bVCd7GuIpEqiZl604SNW9ZGjeic0xjfRKtK1bPw51TzyylyDJ2CxsjMhU2T9bOcWhmc9hHXsSYRFrDuxG8/vRPvXJ7Kh4AEUL7SJqeYKDFXKjq1Tn6eFxC56tzJ08XYOtI/AqCGtipnIEetiHozMewT2QqolJE+mFNDsn8MsY00BXQhsIqmgbdYehE2k8k81irg/eCymd/qvJRVaAcbP8TBWpg85V8jTCz4Rg6ErEHUfOdyQpEW7YKY2o849fNBDBAH4Hpb/7nP5fXKcbEmiDiUQjqs4oYaw+8PxRVE2sYccVxGeg6rs5VjKkNMZ1LwJg61YHKRSyNMAY6kmiRseYjsgJjmo07bCp4uUjdD2lo78ZKHAImRA5cFwMVYBuG9QFE0XRWeD/MljIMrzi+I3Uh0WHDiLoV9h/asNK0lpbkXUAEKzvgaXUkmImo+YhS2F6k+ZUFU7yzBHuvXk1BgRGlpXg5MIlUQ2gKaTD2J6Q3kFob20MS7c2mx2sqbVeRDIQAxS1NbFLcgQF84k6JguLA1pS2FJjJcPOdwTvWEsYSiEQS3Yi7T6vEUcaENDmoC9p7T3qgSEi8a+1pAEzfLBfpdhDVDdh6XwNdsOiLDfGd6gNVEFtZ2tZBW2UVe775QEtg70VyoO1wQCTpjYgYfcFODOVE8l0itDQHFtrGHB4Uu5metXgRJLFawm/vx/CQsb9QxrR0b2mDGm4kzRiwxxqwFqT52K+skeA9N54SKXf4Rtx9WvmfmPxG6n9G4gF4QiwGtyqkLFGPAfZ+hJCiig/0Zp0WhICjA2R0Zbs5j9nS6tyvf/pBKaV++Om3x59+npVS6odf/dLNHFEsC/qskGDn2qy1tC8HnegqX8YrSzTB4twFjGkYZQl14ygushtpI+EGxLYZkhVtCojqiEjWIOgW7MNTfRfPmJZ2SiJPgaJW98uvflBKqfnnXfy/+zFGctXkrWXMBuhWYFscSUbfKIIk9joJx1yel24XAOEDvB1XGdEeOKL1Goz2ClG7grgs0jAhucQOwBiK3XTS9HJmUGmsq4sxv/z0O0op9eNvcnyI+eGnXwubSdRb4EZCJO4Jg2TSyxa0dsL+cSgUQXM/h9PbBUDYBhsY6b3Z1gIzATULapyuMn4vUlNa88TtIBSSCuyiSbqLgq1OmkY+bOvQVfjtTz8opX7np18W5xKH+uFXv6D6QQwAaWgiZS9xz3XxTEQYh/ej7K8gJGH5V8D0v/65vNDJb1HZYJeOgzHbSKBl925kZRhrabA3k6pOqjcE2vZpKKbDMSYZJLF173d4GxhlkOrpHO9RQPtB8I62XqkrDds5W2UaB1mDob/2f5IDU7MOSA9M1EraCSDNJuoKkE5PJIO0OYlbaF8CvWhYJ50YAlwIxkShEi4JWNk0fPshDOKquXCBfojWpFuNzoewnIHq422KWDurHEIJ0qt1Yw1M/1JeEGNC+geizWiXwzXVFADvCk5Ki8SIjHisdFxviJuRufVQpseY2ARQU4KVDX9/82Mo4od/88tIm9Kehjf9QDPRlkw35QCQETkM2z8tG6erIWACW45VCu5mrOIQK0EKImo30GOI+hDEvMAqnMkEzG1xDsOmQUgCtUTrPwHTthg3AElIRwI2PW69orYG09B1AfszUebs1371TzCmXt1oL8UhGUS98y1BCDPcPIT2ES2JvuIWg2QizA3kTV1UAs0AN5It/c8/KqXUjz/O6jiUA6EQMQwAvmWowTaE1HdE/eVJ45He2M/qHGNCqgo2vKhJaAFAn7+kSc7kQAssctRLqjBawXFUkoIO3Yj7n37+faWU+vHfHVfoukXTHQat/LE+UtoQUgBlnaJXZaRd8AoO2NU1jAkUHe+TRfU5060NdINsj4Gb3UA/w0qLiDTwFXBpGSrh3YbIo/LX3+y2U/7yb4rtAieLxhuajpE2EyvVGTnHEiMVpGvXtys5MDVVifttU1AQ0UStQiv0fEvT6Wmzo3WIaBIBNZFi2a9AzAWQRHcbdLNuP8VB3M9bZNpg+VsyN1C9SEMjRotoXtqPIvHNNGCHCioBrF0/wShjkuJoT3oReLMJCDhAHJvWmhQL2PwH4Imu1JjeroKnxTkSm9CWYtuU00B4Ju7H3+zjA4fKAzqi6GH1CnWFisHmSUgLqpqoMo7RdQ6i2u1jrtsuwIICrV+iZ6h/OtMd4ZLT1sPKQNs3Kx7dX+G3EB9wgSVqp/CoeQsrNv5rmlpSv/9zfVf8qXxcToTpoIXgMcPteBAANy2RVFILFFlyL8/0+cTkNyjihf0PqGUQ3aSFIvDKVpDu1thma8YjMEpUTQR2gNrbwCTsMClUJZIh1nVV0YgMdEzvL6sxol5sPr169SorKovNB4by04yJLQ9sTlpfAx0UolkwTym4gA0MAoooz+ZPzzGdngBHYBJ1mLhiQcCiNQxqpv5poIcbcA22KemckU6OqDVo9tJ8sPpetF2AbTwWufCGZDso5KeBPAkhwY5O2khgH0gIj0gyppC+bi9mTKDqBgyM/YnVPFs00tsN+LMIVRGjFTVEXRYClyyy79OfY0ysNfQEpYUTuRCuVmkPgLQu3qJspVgHINLgriVNPKSE9jJcL3+2yegOhsUFot0RmyQuou2ImDHLQSBgDNwvr8UV/nsFYwLtBhcOrB7RYDg8EUpHDP2MkbFqQVqUUP4Zc8d7QkItrNhstyFqxAEN0z/VKqLrNVCoSAOgelmTI5BIpB+6yqx4pP9exJhEAtEiIi2EawrUDlsW4id0dcCcCVWwGYKRdN+AADctg0jhY6pu3sL2ZLR6QSGRonE1sk1ACwxqAClCWi/QGJq5AYI9Z1WOrRiiMhyewM4Ht/hLukQwByQfadVwn+xZIesJSEOw2YIGLVIXjjU4PIGAJYJvVhW4wCINDKsUcRBcSFqwmjH9p//1L+XFr8rRygWbB1cZ2IGwrYvDEGhtPSPGrR+sIC02AUngJfKHgV6ELRdpDpGGQdWJbpHaYTPx+f6vJwZoRVKVgonPAH2KGQKmYbeRKksK0r0YxDNpcDxZkBSemr/SoDPcQRHZsn2JVBu43YOaATVM9CW0cyLtS1gp7imsrmjB6CKuVSmdOasK7N5RxgSibFOV0sYDVcZaUi0M7n4DescNTvqrVD+s5sFIKRwgNZImwB1S5AnSW3qoQX8G6yIFnZMGIFXpSddA+oNBxoRrBNcm21XSpiBSDat0sJmf1NKsMgkIRvSD5wbWBQc+UX8gwjLa3JGfBpqb1u2YreJ6vsoApCod05VIA9cwJrxg2gfwKiEYjBgi6CGINkUoQOdMJKNxU1oofSPy64BTgTWlmwzJ+VphWLBjEYGtSzO+adVsK9BdwsDtYHuB9QL0fMUcE4iyoq8DCYgL8WccpFi7odUC5iwV9anwhAAWUmuRT+JV6zUBcgvuYKwekPzxPEWCITo5f7tIh9JOa1/3i1blRHokvrJtSScAOyW8naTGMdYMRB2lJoXfhdwI1kWkHJFsCMyJ3AbsfqTQTLcaom0E+nvJcJ004VukUlyHiFr6MVevyhEdF4IRhNBsraT9G4tuiHJBTAQdWJRsTD+0zbH1pVuWKJGWlvVqumoDOkSKQywKuV0K96yeQVVclUaERJfUKzOmv/zLv/yLv/iL61flmjF4hwMCrbR/k0ISrXT8LqIsEO9ACwAzJzRPtI5UPyLZehrA+0KkUixIidqUuF3UyeECE1g/oC5QpexPtGBsvfb3RmD6vd/7vd/93d+9YFWObXuwhkidWROXAhabcgAQRU01rIoB/QygJ61nwuJx2cbwGqmX1ACkbYrrB/wVrBrejnTdcbOnc5Y2cScmAtOf/dmf/cmf/Mk1q3K0u9Ip6Q9nGrX3K2JqRBXYskDBaGceQwpW/0T+rIGyOUvbTgqjbAzoCWMGAN5OtxfuF2AnhLsMkTktNuJZbNsBRUdg+vM///M//dM//Vd/82//0//7L+UFMSapt4w1HmtA0v5twNQQeGqaCGFYoPZYVbD4eN7VwWRSoMSz6uVM9BMgPElvwQG3dxeIyGeaA7cNaWUR25M2xF45EZj++I//+A//8A8hYBJBQ689wH4AVOUY6CD5sFo+mQaUQaoT2m4GIAkEd6I3FnmyKOcB/bMGICpOaj+48YgQTdqOSGWlSpb6Vz9GDkyiItn2oNsJafvh/g20TqIKuEcNGFbvRml/SMMTUqK0ZRH/HAOXYVccKIuIoc2JrSMhGGuoY44GIiadRtridBNzAkdg+qM/+qM/+IM/qIHJf8InfMIn3BT+D2QoZbFyRRTMAAAAAElFTkSuQmCC" alt="" width="141" height="90" />
当x轴旋转20°时会将图片进行逆时针旋转,但是请注意:这里不是真正意义上的旋转,而有拉伸倾斜的意思,旋转之后,它的宽度并没有改变,并且做一条垂线可以发现高也是没有改变的。
对于Y轴方向的旋转是一样的:
img{
margin:100px 0 0 100px;
transform:skew(0deg,20deg);
}
上面的代码表示将图片沿着Y轴方向旋转了20°。
旋转之后,就是下面这样了:它是沿着顺时针方向旋转的。
如果,我们对x和y轴都旋转呢?
img{
margin:100px 0 0 100px;
transform:skew(20deg,20deg);
}
那么最终就是综合作用的效果了,如下图所示:
说了这么多,大家有没有发现我们每次偏移,旋转,倾斜,放大和缩小是相对于哪个点呢?
如果你稍微细心的话,就会发现是相对于中心点。这里就要用到tansform-origin属性了。
即通过这个属性,我们可以规定这些方法通过哪一个点作为原点。首先举几个例子。
transform-origin:0 0;表示以左上角为原点。
transform-origin:100% 0;表示以右上角为原点
transform-origin:0 100%;表示以左下角为原点
transform-origin:100% 100%;表示以右下角为原点
于是我们可以得知,这些值的设定是以左上角为基点的,向右为x轴的正方向,向下为y轴的正方向。如果不设定这个属性,那么默认值为
transform-origin:50% 50%;即以中心作为变换的基点。
最后我还要说一下浏览器兼容的问题,为了使代码能在各个浏览器运行成功,我们需要在层叠样式表中多加几行代码,比如说rotate()方法:
transform: rotate(30deg);
-ms-transform: rotate(30deg); /* IE 9 */
-webkit-transform: rotate(30deg); /* Safari and Chrome */
-o-transform: rotate(30deg); /* Opera */
-moz-transform: rotate(30deg); /* Firefox */
这样,我们就可以在各个主要浏览器流畅运行了!
最后,希望我们每个人都能永不放弃,永不放弃有两个原则,第一个就是永不放弃,第二个原则就是:当你想放弃时回头看第一个原则。