STM32—无需中断来实现使用DMA接收串口数据

本节目标:

  • 通过DMA,无需中断,接收不定时长的串口数据

描述:
当在串口多数据传输下,CPU会产生多次中断来接收串口数据,这样会大大地降低CPU效率,同时又需要CPU去做其它更重要的事情,我们应该如何来优化?
比如四轴飞行器,当在不停地获取姿态控制方向时,又要去接收串口数据.
答:使用DMA,无需CPU中断便能实现接收串口数据

1.DMA介绍
DMA,全称为: Direct Memory Access,即直接存储器访问, DMA 传输方式无需 CPU 直接
控制传输,通过硬件为 RAM 与 I/O 设备开辟一条直接传送数据的通路,能使 CPU 的效率大为提高。
2在main()中调用串口配置函数,初始化串口后,然后使能UART1_RX的DMA接收
2.1在main()函数中,使用以下函数来调用配置函数:

uart_init();    //串口初始化为115200

2.2 uart_init()函数如下:

void uart_init(u32 bound){
//GPIO端口设置
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA, ENABLE); //使能USART1,GPIOA时钟
//USART1_TX GPIOA.9
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出
GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.9 //USART1_RX GPIOA.10初始化
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;//PA10
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入
GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.10
USART_InitStructure.USART_BaudRate = bound;//串口波特率
USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式
USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位
USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式 USART_Init(USART1, &USART_InitStructure); //初始化串口1
USART_DMACmd(USART1,USART_DMAReq_Rx,ENABLE); //使能串口1的DMA发送
}

3.在main()中调用DMA配置函数,然后初始化DMA1的UART1_RX通道后,便使能串口1和DMA
3.1如下图所示,UART1_RX位于DMA1通道5:

STM32—无需中断来实现使用DMA接收串口数据

所以使用库函数中变量DMA1_Channel5 来配置UART1_RX.
3.2在main()函数中,定义一个接收数组,使用以下3个参数来调用配置函数:

u8 USART_RX_BUF[]; //接收缓冲,最大USART_REC_LEN个字节.末字节为换行符
MYDMA_Config(DMA1_Channel5,(u32)&USART1->DR,(u32)USART_RX_BUF,);//DMA1通道5,外设为串口1,存储器为SendBuff,长度35,

3.3 MYDMA_Config()函数如下,最后会调用MYDMA_Enable()开始一次DMA传输!:

void MYDMA_Config(DMA_Channel_TypeDef* DMA_CHx,u32 cpar,u32 cmar,u16 cndtr)
{
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); //使能DMA传输
DMA_DeInit(DMA_CHx); //将DMA的通道1寄存器重设为缺省值
DMA1_MEM_LEN=cndtr;
DMA_InitStructure.DMA_PeripheralBaseAddr = cpar; //DMA外设基地址
DMA_InitStructure.DMA_MemoryBaseAddr = cmar; //DMA内存基地址
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; //数据传输方向,从内存读取发送到外设
DMA_InitStructure.DMA_BufferSize = cndtr; //DMA通道的DMA缓存的大小
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //外设地址寄存器不变
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; //内存地址寄存器递增
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; //数据宽度为8位
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; //数据宽度为8位
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; //工作在正常模式
DMA_InitStructure.DMA_Priority = DMA_Priority_Medium; //DMA通道 x拥有中优先级
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; //DMA通道x没有设置为内存到内存传输
DMA_Init(DMA_CHx, &DMA_InitStructure); //根据DMA_InitStruct中指定的参数初始化DMA的通道USART1_Rx_DMA 所标识的寄存器
USART_Cmd(USART1, ENABLE); //使能串口1
DMA_Cmd(DMA_CHx, ENABLE); //使能USART1 TX DMA1 所指示的通道
MYDMA_Enable(DMA1_Channel5);//开始一次DMA传输!
}

3.4 MYDMA_Enable()函数如下:

void MYDMA_Enable(DMA_Channel_TypeDef*DMA_CHx)
{
DMA_Cmd(DMA_CHx, DISABLE ); //关闭USART1 TX DMA1 所指示的通道
DMA_SetCurrDataCounter(DMA_CHx,DMA1_MEM_LEN);//从新设置缓冲大小,指向数组0
DMA_Cmd(DMA_CHx, ENABLE); //使能USART1 TX DMA1 所指示的通道
}

4.然后当USART_RX_BUF[0]是有数据了,适当的延时10ms,让UCOS继续操作其它进程,就能收到不定长的所有数据啦
代码如下(也可以放在无操作系统的while中):

if(USART_RX_BUF[])    //数组0有数据了,说明DMA开始接收一段数据
{
delay_ms(); //延时10ms,让DMA继续接收后面数据的同时,也能跑跑其它进程
printf("1:%s\r\n",USART_RX_BUF); //打印
memset(USART_RX_BUF,,); //清空数组
MYDMA_Enable(DMA1_Channel5);//开始一次DMA传输!
}

上面代码中延时10ms,又能接受多少数据?

在波特率115200下,1S能接受115200位bit,然后一个字节为8位bit,再加上一位停止位,所以可以接受12800个数据.

那么10ms,可以接受128个数据,如果数据数组较大,可以适当的提高延时时间

5.测试效果
如下图所示,输入多少就回显多少,说明已经成功,我这里是设置的接收数组大小为35,如果需要更长的数据,就改变数组大小即可

STM32—无需中断来实现使用DMA接收串口数据

上一篇:线程join理解


下一篇:Selenium Xpath Tutorials - Identifying xpath for element with examples to use in selenium