简介
图像分类对网络结构的要求,一个是精度,另一个是速度。这两个需求推动了网络结构的发展。
- resneXt:分组卷积,降低了网络参数个数。
- densenet:密集的跳连接。
- mobilenet:标准卷积分解成深度卷积和逐点卷积,即深度分离卷积。
- SENet:注意力机制。
简单起见,使用了[1]的代码,注释掉 layer4,作为基本框架resnet14。然后改变局部结构,验证分类效果。
实验结果
GPU:gtx1070
超参数:epochs=80,lr=0.001,optim=Adam
数据集:cifar10,batch_size=100
分组卷积
# 3x3 convolution with grouping
def conv3x3(in_channels, out_channels, stride=1, groups=1):
return nn.Conv2d(in_channels, out_channels, kernel_size=3,
stride=stride, padding=1, bias=False,groups=groups)
_ | 参数个数(k) | GPU内存(M) | 训练时间(s) | 测试时间(s) | 精度(%) |
---|---|---|---|---|---|
resnet14 | 195 | 617 | 665 | 0.34 | 87 |
分组=2 | 99 | 615 | 727 | 0.40 | 85 |
分组=4 | 50 | 615 | 834 | 0.50 | 81 |
结论:卷积分组降低了参数个数,同时也降低了速度和精度。
密集连接
def forward(self, x): # basic block
residual = x
if self.downsample:
residual = self.downsample(x)
out = self.layer1(x)
out = self.relu(out)
out2 = self.layer2(out)
out2 = self.relu(out2)
out3 = torch.cat([out,out2],1)
out = self.layer3(out3)
out4 = self.relu(out)
out5 = torch.cat([out3,out4],1)
out = self.layer4(out5) # back to the specified channels
return out
_ | 参数个数(k) | GPU内存(M) | 训练时间(s) | 测试时间(s) | 精度(%) |
---|---|---|---|---|---|
resnet14 | 195 | 617 | 665 | 0.34 | 87 |
密集连接 | 341 | 679 | 703 | 0.43 | 88 |
结论:参数个数和精度有所增加,速度下降一点点。
深度分离卷积
def Conv2d(in_channels, out_channels,kernel_size=1,padding=0,stride=1):
return nn.Sequential(*[
nn.Conv2d(in_channels, in_channels,kernel_size,stride=stride,padding=padding,groups=in_channels,bias=False),
nn.Conv2d(in_channels, out_channels,1,bias=False),
])
_ | 参数个数(k) | GPU内存(M) | 训练时间(s) | 测试时间(s) | 精度(%) |
---|---|---|---|---|---|
resnet14 | 195 | 617 | 665 | 0.34 | 87 |
分组=2 | 99 | 615 | 727 | 0.40 | 85 |
分组=4 | 50 | 615 | 834 | 0.50 | 81 |
深度分离卷积 | 27 | 665 | 788 | 0.40 | 84 |
结论:深度分离卷积降低了参数个数,同时也降低了速度和精度。与分组卷积(分组=4)相比,精度要高一点。
注意力机制
利用[2]的代码,修正通道个数
def forward(self, x): # BasicBlock
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample:
residual = self.downsample(x)
# attention
original_out = out
out = F.avg_pool2d(out,out.size()[2:])
out = out.view(out.size(0), -1)
out = self.fc1(out)
out = self.relu(out)
out = self.fc2(out)
out = self.sigmoid(out)
out = out.view(out.size(0), out.size(1), 1, 1)
out = out * original_out
out += residual
out = self.relu(out)
return out
_ | 参数个数(k) | GPU内存(M) | 训练时间(s) | 测试时间(s) | 精度(%) |
---|---|---|---|---|---|
resnet14 | 195 | 617 | 665 | 0.34 | 87 |
注意力 | 201 | 641 | 838 | 0.51 | 87 |
结论:参数个数和精度变动不大,速度降低比较明显。
引用
[1] https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/02-intermediate/deep_residual_network/main.py
[2] https://github.com/miraclewkf/SENet-PyTorch/blob/master/se_resnet.py
参考文献
- Chollet, François. Xception: Deep Learning with Depthwise Separable Convolutions[J]. 2016.
- Xie S , Girshick R , Dollár, Piotr, et al. Aggregated Residual Transformations for Deep Neural Networks[J]. 2016.
- Huang G, Liu Z, Laurens V D M, et al. Densely Connected Convolutional Networks[J]. 2016.
- Howard A G , Zhu M , Chen B , et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications[J]. 2017.
- Hu J , Shen L , Albanie S , et al. Squeeze-and-Excitation Networks[J]. 2017.
- https://www.cnblogs.com/liaohuiqiang/p/9691458.html