Chameleon

# -*- coding: utf-8 -*-
"""
Created on Tue Dec 18 09:55:16 2018 @author: Mark,LI
"""
import numpy as np
from sklearn.datasets import load_iris class Chameleon:
W = None; # weight矩阵(方阵)
Conn = None; # 连接矩阵(方阵)
clusters = None;
MI = 0; # 综合指数 # 构造函数,初始化变量
def __init__(self,datanum, mi):
self.W = np.ones((datanum,datanum));
self.Conn = np.zeros((datanum,datanum));
self.clusters = [];
self.MI = mi;
self.inter_EC = None; # 构造weight矩阵。根据两点间距离的倒数计算两点的相似度,作为连接权重
def buildWeightMatrix(self,data):
for i in range(data.shape[0]):
row = data[i];
temp = data - row;
temp = np.multiply(temp,temp);
temp = np.sum(temp,axis=1);
self.W[i] = 1/np.sqrt(temp);
self.W[i][i] = 1.0; # CHAMELEON第一阶段,按照K(包括自己)最邻近建立较小的子簇
def buildSmallCluster(self):
for i in range(self.W.shape[0]):
row = self.W[i];
index = np.argsort(row);
index = index[-K:];
index = list(index);
self.Conn[i,index] = 1;
self.Conn[i][i] = 0; visited = [False for i in range(self.W.shape[0])];
visited = np.array(visited);
for i in range(self.Conn.shape[0]):
if(not visited[i]):
cluster = [];
findConnectGraph(self.Conn.copy(),i,cluster);
self.clusters.append(list(set(cluster)));
visited[cluster] = True; # 打印子簇
def printClusters(self):
for i in range(len(self.clusters)) :
print("以下数据点属于第" + str(i) + "簇:");
item = self.clusters[i];
print(item); # CHAMELEON第二阶段,合并相对互联度RI和相对紧密度RC都较高的簇
def cluster(self):
self.interConnectivity();
l = len(self.clusters);
end = True;
i = 0;
while(i<l):
EC_i = self.inter_EC[i];
j = i + 1;
while(j<l):
EC_j = self.inter_EC[j];
vec1 = self.clusters[i];
vec2 = self.clusters[j];
EC = 0.0;
RI = 0.0;
SEC = 0.0;
RC = 0.0;
for k in range(len(vec1)):
for m in range(len(vec2)):
EC += self.W[vec1[k]][vec2[m]]; RI = 2 * EC / (EC_i + EC_j);
RC = (len(vec1) + len(vec2)) * EC / (len(vec2) * EC_i + len(vec1) * EC_j);
# 以RI*RC作为综合指数
if (RI * RC > self.MI) :
self.mergeClusters(i, j);
l = l - 1;
end = False;
break;
j = j + 1;
i = i + 1;
# 递归合并子簇
if (not end):
self.cluster(); def interConnectivity(self):
l = len(self.clusters);
self.inter_EC = [0 for i in range(l)];
for i in range(l):
vec = self.clusters[i];
for j in range(len(vec)):
for k in range(len(vec)):
self.inter_EC[i] += self.W[vec[j]][vec[k]]; # 把簇b合并到簇a里面去
def mergeClusters(self,a, b) :
item = self.clusters[b];
self.clusters.pop(b);
#self.clusters[b] = [];
self.clusters[a].extend(item); def findConnectGraph(matrix,r,cluster):
row = matrix[r];
cluster.append(r);
index_r = np.where(row==1)[0];
for j in index_r:
temp = matrix[j];
temp_index = np.where(temp==1)[0];
if(len(temp_index)>1):
matrix[r,j] = matrix[j,r] = 0;
findConnectGraph(matrix,j,cluster);
else:
cluster.append(j); if __name__ == '__main__':
K = 2; # 2最邻近,这里面包括它自己
iris = load_iris();
data = iris.data;
label = iris.target;
# #综合指数0.1
cham = Chameleon(data.shape[0], 0.1);
cham.buildWeightMatrix(data);
cham.buildSmallCluster();
print("==============第一阶段后的分类结果==============");
cham.printClusters();
for c in cham.clusters:
print(label[c]);
cham.cluster();
print("==============第二阶段后的分类结果==============");
cham.printClusters();
for c in cham.clusters:
print(label[c]);

用python实现Chameleon算法,改进了Orisun java实现方式,不知道对不对,有问题请交流学习。通过结果发现Chameleon算法的召回率还不错,准确率有待提高。

参考文献:

https://www-users.cs.umn.edu/~hanxx023/dmclass/chameleon.pdf

http://www.cnblogs.com/zhangchaoyang/articles/2182752.html

上一篇:IncDec Sequence(差分)


下一篇:sublime插件(配合nodejs环境)