[python] 基于词云的关键词提取:wordcloud的使用、源码分析、中文词云生成和代码重写

1. 词云简介

词云,又称文字云、标签云,是对文本数据中出现频率较高的“关键词”在视觉上的突出呈现,形成关键词的渲染形成类似云一样的彩色图片,从而一眼就可以领略文本数据的主要表达意思。常见于博客、微博、文章分析等。

除了网上现成的Wordle、Tagxedo、Tagul、Tagcrowd等词云制作工具,在python中也可以用wordcloud包比较轻松地实现(官网github项目):

from wordcloud import WordCloud
import matplotlib.pyplot as plt # Read the whole text.
text = open('constitution.txt').read() # Generate a word cloud image
wordcloud = WordCloud().generate(text) # Display the generated image:
# the matplotlib way:
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")

生成的词云如下:

[python] 基于词云的关键词提取:wordcloud的使用、源码分析、中文词云生成和代码重写

还可以设置图片作为mask:

alice_mask = np.array(Image.open(path.join(d, "alice_mask.png")))
wc = WordCloud(background_color="white", max_words=2000, mask=alice_mask, stopwords=stopwords, contour_width=3, contour_color='steelblue')
wc.generate(text)

[python] 基于词云的关键词提取:wordcloud的使用、源码分析、中文词云生成和代码重写

2. 安装

pip install wordcloud

词云:解决pip install wordcloud安装过程中报错“error: command 'x86_64-linux-gnu-gcc' failed with exit status 1”问题

3. 根据源码分析wordcloud的实现原理

总的来说,wordcloud做的是三件事:

(1) 文本预处理

(2) 词频统计

(3) 将高频词以图片形式进行彩色渲染

从上面的代码可以看到,用 wordcloud.generate(text) 就完成了这三项工作。

源码:

def generate(self, text):
"""Generate wordcloud from text. The input "text" is expected to be a natural text. If you pass a sorted
list of words, words will appear in your output twice. To remove this
duplication, set ``collocations=False``. Alias to generate_from_text. Calls process_text and generate_from_frequencies. Returns
-------
self
"""
return self.generate_from_text(text) def generate_from_text(self, text):
"""Generate wordcloud from text. The input "text" is expected to be a natural text. If you pass a sorted
list of words, words will appear in your output twice. To remove this
duplication, set ``collocations=False``. Calls process_text and generate_from_frequencies. ..versionchanged:: 1.2.2
Argument of generate_from_frequencies() is not return of
process_text() any more. Returns
-------
self
"""
words = self.process_text(text)
self.generate_from_frequencies(words)
return self

generate()和generate_from_text()

它的调用顺序是:

generate(self, text)
=>
self.generate_from_text(text)
=>
words = self.process_text(text)
self.generate_from_frequencies(words)

其中 process_text(text) 对应的是文本预处理和词频统计,而 generate_from_frequencies(words) 对应的是根据词频中生成词云

(1) process_text(text) 主要是进行分词和去噪。

具体地,它做了以下操作:

  • 检测文本编码
  • 分词(根据规则进行tokenize)、保留单词字符(A-Za-z0-9_)和单引号(')、去除单字符
  • 去除停用词
  • 去除后缀('s) -- 针对英文
  • 去除纯数字
  • 统计一元和二元词频计数(unigrams_and_bigrams) -- 可选

返回的结果是一个字典 dict(string, int) ,表示的是分词后的token以及对应出现的次数

这里有一些需要注意的地方,文章后面会再提到。

源码如下:

def process_text(self, text):
"""Splits a long text into words, eliminates the stopwords. Parameters
----------
text : string
The text to be processed. Returns
-------
words : dict (string, int)
Word tokens with associated frequency. ..versionchanged:: 1.2.2
Changed return type from list of tuples to dict. Notes
-----
There are better ways to do word tokenization, but I don't want to
include all those things.
""" stopwords = set([i.lower() for i in self.stopwords]) flags = (re.UNICODE if sys.version < '' and type(text) is unicode
else 0)
regexp = self.regexp if self.regexp is not None else r"\w[\w']+" words = re.findall(regexp, text, flags)
# remove stopwords
words = [word for word in words if word.lower() not in stopwords]
# remove 's
words = [word[:-2] if word.lower().endswith("'s") else word
for word in words]
# remove numbers
words = [word for word in words if not word.isdigit()] if self.collocations:
word_counts = unigrams_and_bigrams(words, self.normalize_plurals)
else:
word_counts, _ = process_tokens(words, self.normalize_plurals) return word_counts

def process_text(self, text)

(2) generate_from_frequencies(words) 主要是根据上一步的结果生成词云分布。

具体地,它做了以下操作:

  • 对词计数结果进行排序,并归一化(normalized)到0~1之间,得到词频
  • 创建图像并确定font_size初始值
  • 给self.words_赋值,记录的是出现频率最高的前max_words个词,以及对应的归一化后的词频,即dict(token, normalized_frequency)
  • 画出灰度图:词频越大,font_size越大;根据生成的随机数来决定字的水平/垂直方向
    • 若随机数小于self.prefer_horizontal则为水平方向,否则为垂直方向;
    • 如果空间不足,优先考虑旋转方向,其次考虑将字体变小
  • 给self.layout_赋值,记录的是词和词频、字体大小、位置、方向、以及颜色,即list(zip(frequencies, font_sizes, positions, orientations, colors))

可以看到,这个函数的主要目的在于得到self.layout_的值,记录了要生成词云分布图所需要的信息。

后面wordcloud.to_file(filename)或者plt.imshow(wordcloud)会把结果以图像的形式呈现出来。其中to_file()函数就会先检测是否已经给self.layout_赋值,如果没有的话会报错。

源码如下:

def generate_from_frequencies(self, frequencies, max_font_size=None):
"""Create a word_cloud from words and frequencies. Parameters
----------
frequencies : dict from string to float
A contains words and associated frequency. max_font_size : int
Use this font-size instead of self.max_font_size Returns
-------
self """
# make sure frequencies are sorted and normalized
frequencies = sorted(frequencies.items(), key=itemgetter(1), reverse=True)
if len(frequencies) <= 0:
raise ValueError("We need at least 1 word to plot a word cloud, "
"got %d." % len(frequencies))
frequencies = frequencies[:self.max_words] # largest entry will be 1
max_frequency = float(frequencies[0][1]) frequencies = [(word, freq / max_frequency)
for word, freq in frequencies] if self.random_state is not None:
random_state = self.random_state
else:
random_state = Random() if self.mask is not None:
mask = self.mask
width = mask.shape[1]
height = mask.shape[0]
if mask.dtype.kind == 'f':
warnings.warn("mask image should be unsigned byte between 0"
" and 255. Got a float array")
if mask.ndim == 2:
boolean_mask = mask == 255
elif mask.ndim == 3:
# if all channels are white, mask out
boolean_mask = np.all(mask[:, :, :3] == 255, axis=-1)
else:
raise ValueError("Got mask of invalid shape: %s"
% str(mask.shape))
else:
boolean_mask = None
height, width = self.height, self.width
occupancy = IntegralOccupancyMap(height, width, boolean_mask) # create image
img_grey = Image.new("L", (width, height))
draw = ImageDraw.Draw(img_grey)
img_array = np.asarray(img_grey)
font_sizes, positions, orientations, colors = [], [], [], [] last_freq = 1. if max_font_size is None:
# if not provided use default font_size
max_font_size = self.max_font_size if max_font_size is None:
# figure out a good font size by trying to draw with
# just the first two words
if len(frequencies) == 1:
# we only have one word. We make it big!
font_size = self.height
else:
self.generate_from_frequencies(dict(frequencies[:2]),
max_font_size=self.height)
# find font sizes
sizes = [x[1] for x in self.layout_]
try:
font_size = int(2 * sizes[0] * sizes[1]
/ (sizes[0] + sizes[1]))
# quick fix for if self.layout_ contains less than 2 values
# on very small images it can be empty
except IndexError:
try:
font_size = sizes[0]
except IndexError:
raise ValueError('canvas size is too small')
else:
font_size = max_font_size # we set self.words_ here because we called generate_from_frequencies
# above... hurray for good design?
self.words_ = dict(frequencies) # start drawing grey image
for word, freq in frequencies:
# select the font size
rs = self.relative_scaling
if rs != 0:
font_size = int(round((rs * (freq / float(last_freq))
+ (1 - rs)) * font_size))
if random_state.random() < self.prefer_horizontal:
orientation = None
else:
orientation = Image.ROTATE_90
tried_other_orientation = False
while True:
# try to find a position
font = ImageFont.truetype(self.font_path, font_size)
# transpose font optionally
transposed_font = ImageFont.TransposedFont(
font, orientation=orientation)
# get size of resulting text
box_size = draw.textsize(word, font=transposed_font)
# find possible places using integral image:
result = occupancy.sample_position(box_size[1] + self.margin,
box_size[0] + self.margin,
random_state)
if result is not None or font_size < self.min_font_size:
# either we found a place or font-size went too small
break
# if we didn't find a place, make font smaller
# but first try to rotate!
if not tried_other_orientation and self.prefer_horizontal < 1:
orientation = (Image.ROTATE_90 if orientation is None else
Image.ROTATE_90)
tried_other_orientation = True
else:
font_size -= self.font_step
orientation = None if font_size < self.min_font_size:
# we were unable to draw any more
break x, y = np.array(result) + self.margin // 2
# actually draw the text
draw.text((y, x), word, fill="white", font=transposed_font)
positions.append((x, y))
orientations.append(orientation)
font_sizes.append(font_size)
colors.append(self.color_func(word, font_size=font_size,
position=(x, y),
orientation=orientation,
random_state=random_state,
font_path=self.font_path))
# recompute integral image
if self.mask is None:
img_array = np.asarray(img_grey)
else:
img_array = np.asarray(img_grey) + boolean_mask
# recompute bottom right
# the order of the cumsum's is important for speed ?!
occupancy.update(img_array, x, y)
last_freq = freq self.layout_ = list(zip(frequencies, font_sizes, positions,
orientations, colors))
return self

def generate_from_frequencies(self, frequencies, max_font_size=None)

4. 应用到中文语料应该要注意的点

wordcloud包是由Andreas Mueller在2015-03-20发布1.0.0版本,现在最新的是2018-03-13发布的1.4.1版本。

英文语料可以直接输入到wordcloud中,但是对于中文语料,仅仅用wordcloud不能直接生成中文词云图。

原因:

英文单词以空格分隔,而我们从前面process_text(text)看到源码中是直接用正则表达式(默认为r"\w[\w']+")进行处理:

In  : re.findall(r"\w[\w']+", "It's Monday today.")
Out: ["It's", 'Monday', 'today']

但是中文里面词与词之间一般不用字符分隔:

In : re.findall(r"\w[\w']+", "今天天气不错,蓝天白云,还有温暖的阳光 哈 哈哈")
Out: ['今天天气不错', '蓝天白云', '还有温暖的阳光', '哈哈']

可以看出,原生的wordcloud是为英文服务的,去除标点符号(单符号'除外)并分割成token;

而应用到中文语料上的时候,注意要先分好词,再用空格分隔连接成字符串,最后输入到wordcloud。

另外要注意的是,无论是对英文还是中文,默认是把单字符剔除掉(因为 regexp = self.regexp if self.regexp is not None else r"\w[\w']+" ),如果想要保留单字符,将regexp参数讲表达式设置为 r"\w[\w']*" 即可。

from wordcloud import WordCloud
from scipy.misc import imread def generate_wordcloud(text, max_words=200, pic_path=None):
"""
生成词云
:param text: 一段以空格为间断的字符串
:param max_words: 词数目上限
:param pic_path: 输出图片路径
:return:
"""
mk = imread("tuoyuan.jpg")
wc = WordCloud(font_path="/usr/share/fonts/myfonts/msyh.ttf", background_color="white", max_words=max_words,
mask=mk, width=1000, height=500, max_font_size=100, prefer_horizontal=0.95, collocations=False)
wc.generate(text=text)
if pic_path:
wc.to_file(pic_path)
else:
plt.imshow(wc)
plt.axis("off")
plt.show()
return wc.words_ def run_wordcloud(corpus, max_words, pic_path=None):
text = " ".join([" ".join(line) for line in corpus]) # 将分词后的结果用空格连接
word2weight = generate_wordcloud(text=text, max_words=max_words, pic_path=pic_path)
word2weight_sorted = sorted(word2weight.items(), key=lambda x: x[1], reverse=True)
logging.info([(k, float("%.5f" % v)) for k, v in word2weight_sorted])

更多参考:word_cloud/examples/wordcloud_cn.py

5. 重写代码

用词云是为了直观地看语料的关键信息,在本人的实际工作应用中,主要目的在于获取关键信息,而不太关注界面的呈现方式。

所以在了解wordcloud源码实现原理之后,决定自己用代码实现。

一方面,使得代码的实现更公开透明,在效率相当的情况下尽量避免使用第三方库,效果可控,甚至还可以提升效率;

另一方面,能结合实际情况更灵活地处理问题。

针对中文的预处理,可以和分词结合一起完成。这里主要进行:分词和词性标注、小写化、去停用词、去数字、去单字符、以及保留指定词性

import jieba
import jieba.posseg as pseg class Utils(object):
def __init__(self, utils_data=None):
self.stopwords = self.init_utils(utils_data)
self.pos_save = {
"n", "an", "Ng", "nr", "ns", "nt", "nz", "vn", "un", # 名
"v", "vg", "vd", # 动
"a", "ag", "ad", # 形
"j", "l", "i", "z", "b", "g", "s", "h", # j简称略语、l习用语、i成语、z状态词、b区别词、g语素、s处所词、h前接成分
"zg", "eng",
"x"} # 未知(自定义词) def _init_utils(self, utils_data):
for wd in utils_data["user_dict"]:
jieba.add_word(wd)
return set(utils_data["stopwords"]) def _token_filter(self, token): # 去停用词; 去数字; 去单字
return token not in self.stopwords and not token.isdigit() and len(token) >= 2 def _token_filter_with_flag(self, pair_word_flag): # 保留指定词性
return self.token_filter(pair_word_flag.word) and pair_word_flag.flag in self.pos_save def cut(self, text):
return list(filter(self._token_filter, list(jieba.cut(text.lower())))) # 分词; 小写化; def cut_with_flag(self, text):
pairs = list(filter(self._token_filter_with_flag, list(pseg.cut(text.lower())))) # 分词和词性标注; 小写化;
return [p.word for p in pairs]

做完文本分词和其它预处理之后,直接统计词及对应的出现次数即可。为了更直观,这里输出的是词计数,而不是归一化后的词频。排序结果与wordcloud等同。

    def word_count(corpus, n_gram=1, n=None):
counter = Counter()
if n_gram == 1:
for line in corpus:
counter.update(line)
elif n_gram == 2:
for line in corpus:
size = len(line)
counter.update(["%s_%s" % (line[idx], line[idx + 1]) for idx in range(size) if idx + 1 < size]) # 有序
else:
logging.info("[Error] Invalid value of param n_gram: %s (only 1 or 2 accepted)" % n_gram)
return counter.most_common(n=n)

另外还可以统计高频词的共现情况、把高频词/词共现反向映射到对应的句子等等,便于从高频词层面到高频句子类型层面的归纳。

参考:

https://pypi.org/project/wordcloud/

https://github.com/amueller/word_cloud

http://python.jobbole.com/87496/

https://www.jianshu.com/p/ead991a08563

https://blog.csdn.net/qq_34739497/article/details/78285972

https://www.cnblogs.com/sunnyeveryday/p/7043399.html

https://www.cnblogs.com/naraka/p/8992058.html

https://www.cnblogs.com/franklv/p/6995150.html

https://blog.csdn.net/Tang_Chuanlin/article/details/79862505

https://www.cnblogs.com/zjutlitao/archive/2016/08/04/5734876.html

上一篇:selenium3 + python - action_chains源码分析


下一篇:solrcloud集群部署