第8节:EM算法及numpy复现

文章目录

EM期望极大算法(expectation maximization algorithm)

  • 用于含有隐变量 (hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计。
  • EM算法的每 次迭代由两步组成:
    • E步,求期望(expectation);
    • M步,求极大(maximization).
  • 在统计学中似然和概率却是两个不同的概念。概率是在特定环境下某件事情发生的可能性,也就是结果没有产生之前依据环境所对应的参数来预测某件事情发生的可能性,比如抛硬币,抛之前我们不知道最后是哪一面朝上,但是根据硬币的性质我们可以推测任何一面朝上的可能性均为50%,这个概率只有在抛硬币之前才是有意义的,抛完硬币后的结果便是确定的;而似然刚好相反,是在确定的结果下去推测产生这个结果的可能环境(参数),还是抛硬币的例子,假设我们随机抛掷一枚硬币1,000次,结果500次人头朝上,500次数字朝上(实际情况一般不会这么理想,这里只是举个例子),我们很容易判断这是一枚标准的硬币,两面朝上的概率均为50%,这个过程就是我们运用出现的结果来判断这个事情本身的性质(参数),也就是似然。

numpy复现

# -*- coding:utf-8 -*-
# /usr/bin/python

import numpy as np
import math


class EM:
    def __init__(self, prob):
        self.pro_A, self.pro_B, self.pro_C = prob

    # e_step
    def pmf(self, i):
        pro_1 = self.pro_A * math.pow(self.pro_B, data[i]) * math.pow((1 - self.pro_B), 1 - data[i])
        pro_2 = (1 - self.pro_A) * math.pow(self.pro_C, data[i]) * math.pow((1 - self.pro_C), 1 - data[i])
        return pro_1 / (pro_1 + pro_2)

    # m_step
    def fit(self, data):
        count = len(data)
        print('init prob:{}, {}, {}'.format(self.pro_A, self.pro_B, self.pro_C))
        for d in range(count):
            _ = yield
            _pmf = [self.pmf(k) for k in range(count)]
            pro_A = 1 / count * sum(_pmf)
            pro_B = sum([_pmf[k] * data[k] for k in range(count)]) / sum([_pmf[k] for k in range(count)])
            pro_C = sum([(1 - _pmf[k]) * data[k] for k in range(count)]) / sum([(1 - _pmf[k]) for k in range(count)])
            print('{}/{}  pro_a:{:.3f}, pro_b:{:.3f}, pro_c:{:.3f}'.format(d + 1, count, pro_A, pro_B, pro_C))
            self.pro_A = pro_A
            self.pro_B = pro_B
            self.pro_C = pro_C

data=[1,1,0,1,0,0,1,0,1,1]
em = EM(prob=[0.5, 0.5, 0.5])
f = em.fit(data)
next(f)
f.send(1)
f.send(2)
f.send(9)
上一篇:国产蓝牙耳机什么牌子好用?2022年国产无线耳机排行榜前十名


下一篇:SiteSucker pro for Mac(网站下载工具)